
Rainbow game domination subdivision number of a
graph

J. Amjadi
Department of Mathematics

Azarbaijan Shahid Madani University
Tabriz, I.R. Iran

j-amjadi@azaruniv.edu

Abstract

The rainbow game domination subdivision number of a graph G is defined
by the following game. Two players D and A, D playing first, alternately mark
or subdivide an edge of G which is not yet marked nor subdivided. The game
ends when all the edges of G are marked or subdivided and results in a new
graph G′. The purpose of D is to minimize the 2-rainbow dominating number
γr2(G

′) of G′ while A tries to maximize it. If both A and D play according
to their optimal strategies, γr2(G

′) is well defined. We call this number the
rainbow game domination subdivision number of G and denote it by γrg(G).

In this paper we initiate the study of the rainbow game domination sub-
division number of a graph and present sharp bounds on the rainbow game
domination subdivision number of a tree.

Keywords: rainbow domination number, rainbow game domination subdivi-
sion number
MSC 2010: 05C69, 05C05

1 Introduction

In this paper, G is a simple graph with vertex set V (G) and edge set E(G) (briefly V
and E). The number of vertices of a graph G is its order n = n(G). For every vertex
v ∈ V , the open neighborhood NG(v) = N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and
the closed neighborhood of v is the set NG[v] = N [v] = N(v) ∪ {v}. A subdivision of
an edge uv is obtained by removing the edge uv, adding a new vertex w, and adding
edges uw and wv. A vertex of degree one is a leaf and a support vertex is a vertex
that is adjacent to at least one leaf. A vertex v ∈ V is said to dominate all the
vertices in its closed neighborhood N [v]. A subset D of V is a dominating set of G if
D dominates every vertex of V \D at least once. The domination number γ(G) is the
minimum cardinality among all dominating sets of G. Similarly, a subset D of V is
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a 2-dominating set of G if D dominates every vertex of V \D at least twice. The 2-
domination number γr2(G) is the minimum cardinality among all 2-dominating sets of
G. We refer the reader to the books [7, 10] for graph theory notation and terminology
not defined here.

The game domination subdivision number of graph G, introduced by Favaron et
al. in [6], is defined by the following game. Two players A and D alternately play
on a given graph G, D playing first, by marking or subdividing an edge of G. An
edge which is neither marked nor subdivided is said to be free. At the beginning of
the game, all the edges of G are free. At each turn, D marks a free edge of G and A
subdivides a free edge of G by a new vertex. The game ends when all the edges of
G are marked or subdivided and results in a new graph G′. The purpose of D is to
minimize the domination number γ(G′) of G′ while A tries to maximize it. If both A
and D play according to their optimal strategies, γ(G′) is well defined. This number,
denoted by γgs(G), is called the game domination subdivision number of G.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a
function f from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such
that for any vertex v ∈ V (G) with f(v) = ∅ the condition

⋃
u∈N(v) f(u) = {1, 2, . . . , k}

is fulfilled. The weight of a kRDF f is the value ω(f) =
∑

v∈V |f(v)|. The k-rainbow
domination number of a graph G, denoted by γrk(G), is the minimum weight of a
kRDF of G. A γrk(G)-function is a k-rainbow dominating function of G with weight
γrk(G). Note that γr1(G) is the classical domination number γ(G). The k-rainbow
domination number was introduced by Brešar, Henning, and Rall [1] and has been
studied by several authors (see for example [2, 3, 4, 5, 8, 9, 11, 12]).

Following the ideas in [6], we propose a similar game based on the rainbow domi-
nation number. Two players A and D alternately play on a given graph G, D playing
first, by marking or subdividing an edge of G. An edge which is neither marked nor
subdivided is said to be free. At the beginning of the game, all the edges of G are
free. At each turn, D marks a free edge of G and A subdivides a free edge of G by
a new vertex. The game ends when all the edges of G are marked or subdivided and
results in a new graph G′. The purpose of D is to minimize the 2-rainbow domination
number γr2(G

′) of G′ while A tries to maximize it. If both A and D play according
to their optimal strategies, γr2(G

′) is well defined. We call this number the rainbow
game domination subdivision number of G and denote it by γrg(G). As the 2-rainbow
domination number of any graph obtained by subdividing some of its edges is at
least as large as the 2-rainbow domination number of the graph itself, we clearly have
γr2(G) ≤ γrg(G).

The purpose of this paper is to initiate the study of the rainbow game domination
subdivision number of a graph. We first determine γrg(G) for some classes of graphs,
and then we establish some bounds on it when G is a tree.

We make use of the following results in this paper.

Proposition A. ([2]) For n ≥ 2, γr2(Pn) =
⌈
n+1
2

⌉
.

Proposition B. ([2]) For n ≥ 3, γr2(Cn) =
⌊
n
2

⌋
+
⌈
n
4

⌉
−
⌊
n
4

⌋
.
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The following lower bound for the 2-rainbow domination number of any graph is
proved in [8].

Proposition C. For any graph G of order n and maximum degree ∆ ≥ 1,

γr2(G) ≥ 2n

∆ + 2
.

Corollary 1. Let G be an r-regular graph of order n with r ≥ 2. Then

γrg(G) ≥
⌈

2(n+ b(rn)/4c)
r + 2

⌉
.

Proof. The graph G has (rn)/2 edges. Therefore player A subdivides b(rn)/4c edges.
It follows that the resulting graph G′ has maximum degree r and n+b(rn)/4c vertices.
Using Proposition C, we deduce that

γrg(G) = γr2(G
′) ≥

⌈
2(n+ b(rn)/4c)

r + 2

⌉
.

2 Exact value for some classes of graphs

In this section we determined the exact value of the rainbow game domination sub-
division number for some classes of graphs.

Example 1. For n ≥ 2, γrg(K1,n−1) = dn+2
2
e.

Proof. Clearly A subdivides exactly bn−1
2
c edges of K1,n−1 and hence γrg(K1,n−1) =

bn−1
2
c+ 2 = dn+2

2
e.

The subdivision graph S(G) is the graph obtained from G by subdividing each edge
of G. The subdivision star S(K1,t) for t ≥ 2, is called a healthy spider St.

Example 2. For every integer t ≥ 2, γrg(S(K1,t)) = 2t.

Proof. Let v be the central vertex of S(K1,t) and let N(v) = {v1, . . . , vt}. Assume ui
is the leaf adjacent to vi. The strategy of A is as follows. When D marks an edge
in {viui, vvi}, then A subdivides the other edge in {viui, vvi}, for each 1 ≤ i ≤ t. It
follows that γrg(S(K1,t)) ≥ 2t. On the other hand, since player D began the game,
he can marks an edge in {viui, vvi} for each i. Hence γrg(S(K1,t)) = 2t.

Example 3. For n ≥ 2, γrg(Pn) =
⌈
n
2

⌉
+
⌈
n−1
4

⌉
.

Proof. In the game on a path, all the strategies of D and A are equivalent since
subdividing any edge of a path results a new path with one more vertex. If G =
Pn, then A subdivides bn−1

2
c edges and G′ = Pn′ with n′ = n + bn−1

2
c. Applying

Proposition A, we have γr2(Pn′) = dn′+1
2
e and therefore

γrg(Pn) =

⌈
n+ bn−1

2
c+ 1

2

⌉
=
⌈n

2

⌉
+

⌈
n− 1

4

⌉
.
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Using Proposition B and an argument similar to that described in the proof of
Example 3 we obtain the next result.

Example 4. For n ≥ 3, γrg(Cn) = b3n
4
c+

⌈
3n−1

8

⌉
−
⌊
3n
8

⌋
.

If Cn is a cycle of order n = 8k, then Proposition 4 shows that

γrg(Cn) =
3n

4
=

⌈
2(n+ b(2n)/4c)

4

⌉
.

Therefore Corollary 1 is sharp, at least for r = 2.
The Dutch-windmill graph, K

(m)
3 , is a graph which consists of m copies of K3 with

a vertex in common.

Example 5. For every positive integer m, γrg(K
(m)
3 ) = 1 + dm

2
e+ 2bm

2
c.

Proof. Clearly γrg(K3) = 2 and so we assume that m ≥ 2. Let v, ui, wi are the vertices

of the i-th copy of K3 in K
(m)
3 (v is the common vertex). In the graph K

(m)′

3 obtained
at the end of the game, let p and q be the numbers of cycles whose at most one edge

respectively, exactly two edges are subdivided. Then clearly γr2(K
(m)′

3 ) = 1 + p+ 2q.
The strategy of D is as follows. When some edge remains free after A has plaid,

D marks a free edge in a cycle whose two edges are subdivided if possible, otherwise
a free edge of cycle that all its edges are free if possible, otherwise a free edge in
the cycle whose one edge is marked and one edge is subdivided if possible, otherwise
a free edge in the cycle still having free edges. On this way, the number of cycles
with exactly two subdivided edges is bm

2
c and the number of cycles with at most one

subdivided edge is dm
2
e and hence γrg(K

(m)
3 ) = γr2(K

(m)′

3 ) ≤ 1 + dm
2
e+ 2bm

2
c.

The strategy of A is as follows. When some edge remains free after D has plaid, A
subdivides a free edge in a cycle whose one edge is marked and one edge is subdivided
if possible, otherwise a free edge in a cycle with two marked edges if possible, otherwise
a free edge of cycle that all its edges are free if possible, otherwise a free edge in the
cycle still having free edges. On this way, the number of cycles with at least two
subdivided edges is bm

2
c and the number of cycles with one subdivided edge is dm

2
e.

Hence γrg(K
(m)
3 ) = γr2(K

(m)′

3 ) ≥ 1 + dm
2
e+ 2bm

2
c and the proof is complete.

For two positive integers p and q, we call a double star DSp,q the graph obtained
from two stars K1,p of center u and K1,q of center v by adding the edge uv.

Example 6. For the double star DS1,q of order n = q + 3 ≥ 5,

γrg(DS1,q) = 2 +

⌊
n+ 1

2

⌋
.

Proof. By assumption, q ≥ 2. Then, Player D cannot prevent A to subdivide some
edge of the star K1,q. If q = 2, then clearly γrg(DS1,2) = 5 = 2 + bn+1

2
c. Assume

henceforth q ≥ 3. Player A subdivides b q+2
2
c edges that among them q′ are edges

of the star K1,q with 0 < q′ ≤ b q+2
2
c < q. Therefor, the resulting graph DS ′1,q has
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2-rainbow domination number q′ + 3 if q′ = b q+2
2
c and q′ + 4 when q′ ≤ b q

2
c . Hence

D tries to mark and A to subdivide the largest possible number of edges of the star
K1,q. At the end of the game, as D began, b q

2
c edges of the star are subdivided and

γr2(DS
′
1,q) = b q

2
c+ 4 = bn+1

2
c+ 2.

Example 7. For the double star DSp,q of order n = p+ q + 2 with 2 ≤ p ≤ q,

γrg(DSp,q) =

{
n+1
2

+ 2 if n is odd
n
2

+ 3 if n is even
=

⌈
n+ 1

2

⌉
+ 2.

Proof. Let p′ and q′ be the numbers of edges which have been subdivided in the
stars K1,p and K1,q respectively, in the graph DS ′p,q obtained at the end of the game.
Moreover, let η = 1 if uv is subdivided, η = 0 otherwise. Clearly p′ + q′ + η = bn−1

2
c

and p′ + q′ ≤ bn−1
2
c < n− 2 = p+ q. Then

γr2(DS
′
p,q) = p′ + q′ + 4 =

⌊
n− 1

2

⌋
− η + 4.

The strategy of A is as follows. When some edge remains free after D has plaid, A
subdivides a free edge in a star already containing marked edges if possible, otherwise
a free edge of the star still having the maximum number of free edges if possible,
otherwise the edge uv. On this way, A never simultaneously subdivides uv and all
the edges of a star. Hence γr2(DS

′
p,q) ≥ bn−12 c+4. Moreover if n is even, then A does

not subdivide uv, p′ < p, q′ < q, p′+q′ = p+q
2

, and γr2(DS
′
p,q) = p′+q′+4 = p+q

2
+4 =

n−2
2

+4 = n
2

+3. If n is odd, the total number of edges is even and if D never marks uv,
A is obliged to subdivide it. Hence η = 1 and γr2(DS

′
p,q) = bn−1

2
c+ 3 = n+1

2
+ 2.

3 2-domination number

In this section we present some sharp bounds on the rainbow game domination sub-
division number of graph which deal with to 2-domination.

Proposition 2. Let X be an independent set of G such that V \X is a 2-dominating
set. Then γrg(G) ≤ 2(n−|X|). In particular, if δ(G) ≥ 2 then γrg(G) ≤ 2(n−α(G)).

Proof. Let X = {x1, . . . , x|X|} and let xix
1
i , xix

2
i ∈ E(G). First Player D marks an

edge in E(G) − {xix1i , xix2i | 1 ≤ i ≤ |X|} if any, otherwise any edge, and continues
as follows. When A subdivides an edge in {xix1i , xix2i } then D marks the other free
edge in {xix1i , xix2i } if any, otherwise any free edge. Assume that G′ is the graph
obtained from G at the end of the game. Obviously, the function f : V (G′) →
{∅, {1}, {2}, {1, 2}} defined by f(u) = {1, 2} for each u ∈ V (G) − X and f(u) = ∅
otherwise, is a 2-rainbow dominating function of G′ of weight 2(n − |X|). Hence
γrg(G) = γr2(G

′) ≤ 2(n− |X|).

The next result is an immediate consequence of Proposition 2.

Corollary 3. If G is a bipartite graph with δ(G) ≥ 2, then γrg(G) ≤ n(G).
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Proof. If G is a bipartite graph, then α(G) ≥ n(G)/2. It follows from Proposition 2
that γrg(G) ≤ 2(n(G)− α(G)) ≤ n(G).

Proposition 4. If p and q are two integers with 2 ≤ p ≤ q, then⌈
2(p+ q + b(pq)/2c)

q + 2

⌉
≤ γrg(Kp,q) ≤ 2p.

In particular, γrg(K2,q) = 4.

Proof. It follows from Proposition 2 that γrg(Kp,q) ≤ 2p.
The graph G = Kp,q has pq edges. Therefore player A subdivides exactly b(pq)/2c

edges. Let G′ be the graph obtained at the end of game. Then G′ has maximum
degree q and p+ q + b(pq)/2c vertices. Using Proposition C, we deduce that

γrg(G) = γr2(G
′) ≥

⌈
2(p+ q + b(pq)/2c)

q + 2

⌉
.

Now it is easy to see that ⌈
2(p+ q + b(pq)/2c)

q + 2

⌉
≥ p+ 2,

when q > 3 and when p = 2 and q > 2. This implies that γrg(K2,q) = 4 when q > 2,
and γrg(K2,2) = 4 follows from Example 4.

Next we present a sharp upper bound on the rainbow game domination subdivision
number of trees.

Remark 5. Consider the variant of the game defined by the same rule with the ex-
ception that in one turn of the game, D is allowed to mark two free edges instead of
one. For this variant, the rainbow game domination subdivision number γ′rg satisfies
γ′rg(G) ≤ γrg(G).

For a vertex v in a rooted tree T , let D(v) denote the set of descendants of v and
D[v] = D(v) ∪ {v}. The maximal subtree at v is the subtree of T induced by D[v],
and is denoted by Tv.

Theorem 6. For any tree T of order n ≥ 2 different from P3,

γrg(T ) ≤ 2γ2(T )− 2.

Furthermore, this bound is sharp for healthy spider.

Proof. The proof is by induction on n. The statement is obviously true for n ≤ 3.
For the inductive hypothesis, let n ≥ 4 and suppose that for every nontrivial tree T ,
different from P3, of order less than n the result is true. Let T be a tree of order n. If
T is a star K1,n−1, then γ2(T ) = n− 1 and, by Example 1, γrg(T ) = dn+2

2
e. It follows

that γrg(T ) < 2γ2(T ) − 2. If T = P4, then clearly γrg(T ) = 3 < 4 = 2γ2(T ) − 2. If
T is a double star DS1,q with n = 3 + q ≥ 5, then γ2(T ) = n − 1 and, by Example
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6, γrg(T ) = 2 + bn+1
2
c. This implies that γrg(T ) < 2γ2(T ) − 2. If T is a double star

DSp,q then by Example 7, γrg(T ) < 2γ2(T )− 2. Thus, we assume that T is not a star
or double star. Then diam(T ) ≥ 4. Assume that P = v1v2 . . . vk, k ≥ 5, is a longest
path of T . Let degT (vk−1) = t and let D be a minimum 2-dominating set of T not
containing vk−1. Obviously, such a minimum 2-dominating set exists. We consider
two cases. In each of them, we define a subtree T1 of order at least two of T and a
strategy for D. We denote by T ′ and T ′1 the trees obtained from T and T1 at the end
of the game.

Case 1. t ≥ 3.
Root T at v1 and let vk, u1, . . . , ut−2 be the leaves adjacent to vk−1. Then the set
D \ {vk, u1, . . . , ut−2} is a 2-dominating set for the tree T1 = T − Tvk−1

and hence

γ2(T1) ≤ γ2(T )− (t− 1). (1)

If T1 = P3, then it is easy to see that γrg(T ) < 2γ2(T )−2. Let T1 6= P3. Player D plays
the game according to an optimal strategy on T1 as long as A subdivides an edge of
T1. If A subdivides a free edge in F = {vk−2vk−1, vk−1vk, vk−1u1, . . . , vk−1ut−2} then
D marks a free edge in F , if any, and otherwise an arbitrary free edge in T1, if any. It
follows from Remark 5 that γr2(T

′
1) ≤ γrg(T1). We can extend each γr2(T

′
1)-function,

f , to a 2-rainbow dominating function of T ′ by assigning {1, 2} to vk−1 and assigning
{1} to each leaf at distance 2 from vk−1. Thus

γrg(T ) ≤ γr2(T
′) ≤ γr2(T

′
1) + 2 + bt− 1

2
c ≤ γrg(T1) + 2 + bt− 1

2
c.

By the induction hypothesis and (1), we have

γrg(T ) ≤ γrg(T1) + 2 + bt− 1

2
c ≤ (2γ2(T1)− 2) + 2 + bt− 1

2
c < 2γ2(T )− 2.

Case 2. t = 2.
Since vk−1 /∈ D, {vk, vk−2} ⊆ D and D \ {vk} is a 2-dominating set of the tree
T1 = T − {vk, vk−1}. Hence γ2(T1) ≤ γ2(T ) − 1. If T1 = P3, then T = P5 and it
follows from Example 3 that γrg(T ) < 2γ2(T )− 2. Let T1 6= P3.

Player D plays the game according to an optimal strategy on T1 as long as A
subdivides an edge of T1 and when A subdivides one edge in {vk−2vk−1, vk−1vk} then
D marks the second edge in {vk−2vk−1, vk−1vk}. We may assume, without loss of
generality, that A subdivides the edge vk−1vk by a new vertex z. We can extend each
γr2(T

′
1)-function, f , to a 2-rainbow dominating function of T ′ by assigning {1, 2} to

z. Hence
γrg(T ) ≤ γrg(T1) + 2. (2)

It follows from the induction hypothesis and (2) that

γrg(T ) ≤ γrg(T1) + 2 ≤ 2γ2(T1)− 2 + 2 ≤ 2γ2(T )− 2.

This completes the proof.
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4 Trees

In this section we present lower and upper bounds on the rainbow game domination
subdivision number of a tree.

Theorem 7. For any tree T of order n ≥ 2,

γrg(T ) ≥ dn+ 2

2
e.

Moreover, γrg(T ) = dn+2
2
e if and only if T = P5 or T is a star.

Proof. The proof is by induction on n. Obviously, the statement is true for n ≤ 3.
Assume the statement is true for all trees of order less than n, where n ≥ 4. Let T be a
tree of order n. If T is a star, then the result follows from Example 1. If T is a double
star, then we deduce from Examples 6 and 7 that γrg(T ) > dn+2

2
e. Suppose T is not

a star or double star. Then diam(T ) ≥ 4. Let P = v1v2 . . . vk be a diametral path in
T and let d = degT (vk−1) and t = degT (v2). Assume that u1, u2, . . . , ud−2, vk are the
leaves adjacent to vk−1 if d ≥ 3 and u′1, u

′
1, . . . , u

′
t−2, v1 are the leaves adjacent to v2

when t ≥ 3. In what follows, we will consider trees T1 formed from T by removing a
set of vertices. We denote by T ′ and T ′1 the trees obtained from T and T1 at the end
of the game. We proceed further with a series of claims that we may assume satisfied
by the tree.

Claim 1. d = 2 or d is odd.
Suppose d ≥ 3 and d is even. Let T1 = T−{vk−1, vk, u1, . . . , ud−2}. Player A plays the
game according to an optimal strategy on T1 as long as D marks an edge of T1. If D
marks a free edge in F = {vk−2vk−1, u1vk−1, . . . , ud−2vk−1, vk−1vk} then A subdivides
a free edge in F . Suppose that T ′ is the tree obtained at the end of the game.
Obviously, A subdivides d

2
edges in F . Let {z1, z2, . . . , z d

2
} be the subdivision vertices

used to subdivide the edges in F . Then T ′ − {vk−1, vk, u1, . . . , ud−2, z1, z2, . . . , z d
2
} is

the tree T ′1 obtained from T1 at the end of the game and γrg(T1) = γr2(T
′
1).

We show that γr2(T
′) ≥ γr2(T

′
1) + d

2
+ 1. Let f be a γr2(T

′)-function. If A has
subdivided the edge vk−2vk−1, then f must assign {1, 2} to vk−1 and {1} to d

2
−1 leaves

at distance 2 from vk−1 and hence f assigns ∅ to the subdivision vertex of the edge
vk−1vk−2. It follows that the restriction of f to T ′1 is a 2-rainbow dominating function
on T ′1 implying that γr2(T

′) ≥ γr2(T
′
1)+

d
2
+1. LetA don’t subdivide the edge vk−2vk−1.

Then A has subdivided d
2

pendant edges incident to vk−1. Then f must assign {1, 2}
to vk−1 and {1} to d

2
leaves at distance 2 from vk−1. Then the function g defined by

g(vk−2) = {1} and g(v) = f(v) for each v ∈ V (T ′1)−{vk−2} is a 2-rainbow domination
function on T ′1 of with ω(fT ′1)+1. It follows that γr2(T

′) = ω(g)+ d
2
+1 ≥ γr2(T

′
1)+

d
2
+1.

Thus γr2(T
′) ≥ γr2(T

′
1)+ d

2
+1. Then γrg(T ) ≥ γrg(T−{vk−1, vk, u1, . . . , ud−2})+ d

2
+1

and it follows from inductive hypothesis that

γrg(T ) ≥ γrg(T − {vk−1, vk, u1, . . . , ud−2}) + d
2

+ 1

≥ dn−d+2
2
e+ d

2
+ 1

≥ dn+4
2
e > dn+2

2
e.
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Similarly, we may assume that t = 2 or t ≥ 3 and t is odd.

Claim 2. d = 2 or n is odd.
Suppose d ≥ 3 and n is even. Then by Claim 1, d is odd. An argument similar to
that described in Claim 1, shows that γrg(T ) ≥ dn−d+2

2
e + d−1

2
+ 1. Since n is even,

n− d+ 2 is odd and we have

γrg(T ) ≥ n− d+ 3

2
+
d− 1

2
+ 1 =

n+ 2

2
+ 1 = dn+ 2

2
e+ 1 > dn+ 2

2
e.

Claim 3. d = 2.
Let d ≥ 3. Then by Claims 1 and 2, the integers d and n are odd. Since t = 2 or
t ≥ 3 and t is odd, we consider two Cases.

Case 3.1. t = 2.
If diam(T ) = 4 and degT (v3) = 2, then n is even which is a contradiction. Hence, we
may assume diam(T ) ≥ 5 or degT (v3) ≥ 3. Let T1 = T − {v1, vk−1, vk, u1, . . . , ud−2}.
The strategy of A is that he plays the game according to an optimal strategy on T1 as
long asD marks edges of T1. WhenD marks an edge in F = {u1vk−1, . . . , ud−2vk−1, vk−1vk}
then A subdivides a free edge in F and when D marks an edge in {v1v2, vk−2vk−1, },
then A subdivides the other edge in {v1v2, vk−2vk−1, }. Assume that Z is the set of
subdivision vertices used to subdivide the edges not in T1. Suppose that T ′ is the tree
obtained at the end of the game. Then T ′−(Z∪{v1, vk−1, vk, u1, . . . , ud−2}) is the tree
T ′1 obtained from T1 at the end of the game and γrg(T1) = γr2(T

′
1). Using an argument

similar to that described in Claim 1, we can see that γr2(T
′) ≥ γr2(T

′
1) + d−1

2
+ 2. It

follows from induction hypothesis that γr2(T
′) ≥ dn−d+1

2
e+ d−1

2
+ 2 > dn+2

2
e.

Case 3.2. t ≥ 3 is odd.
If diam(T ) = 4 and degT (v3) = 2, then it is easy to verify that γrg(T ) = 4+ d−1

2
+ t−1

2
>

dn+2
2
e. Let diam(T ) ≥ 5 or degT (v3) ≥ 3 and let T1 = T − ({v1, v2, u′1, . . . , u′t−2} ∪

{vk−1, vk, u1, . . . , ud−2}). The strategy of A is that he plays the game according to
an optimal strategy on T1 as long as D marks edges of T1. When D marks an edge
in F1 = {u1vk−1, . . . , ud−2vk−1, vk−1vk} then A subdivides a free edge in F1, when D
marks an edge in F2 = {u′1v2, . . . , u′t−2v2, v2v1} then A subdivides a free edge in F2

and when D marks an edge in {v3v2, vk−2vk−1, }, then A subdivides the other edge
in {v3v2, vk−2vk−1, }. Let Z be the set consists of all subdivision vertices used to
subdivide the edges not in T1 and let T ′ be the tree obtained at the end of the game.
Then T ′− (Z ∪ {v1, v2, u′1, . . . , u′t−2} ∪ {vk−1, vk, u1, . . . , ud−2}) is the tree T ′1 obtained
from T1 at the end of the game and γrg(T1) = γr2(T

′
1). Using an argument similar to

that described in Claim 1, one can see that γr2(T
′) ≥ γr2(T

′
1) + d−1

2
+ t−1

2
+ 3. By

inductive hypothesis we have γr2(T
′) ≥ dn−d−t+2

2
e+ d−1

2
+ t−1

2
+ 3 > dn+2

2
e.

Claim 4. t = 2.
Let t ≥ 3. Then t is odd. Using an argument similar to that described in Case 1 of
Claim 3, we can see that γr2(T

′) > dn+2
2
e.

Claim 5. degT (vk−2) = 2.
Let degT (vk−2) ≥ 3. We consider three Cases.

Case 1. degT (vk−2) ≥ 3 and vk−2 is adjacent to a support vertex z2 6∈ {vk−3, vk−1}.
By Claims 1, 2, and 3, we may assume degT (z2) = 2. Let z1 be the leaf adjacent
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to z2 and let T1 = T − {vk−1, vk, z1, z2}. Player A plays according to an optimal
strategy on T1 as long as D marks edges of T1, and when D marks an edge in
{vk−2vk−1, vk−1vk} then A subdivides the other edge in {vk−2vk−1, vk−1vk} with vertex
w1 and when D marks an edge in {vk−2z2, z2z1} then A subdivides the other edge in
{vk−2z2, z2z1} with vertex w2. Let T ′ be the tree obtained at the end of the game.
Then T ′−{z1, z2, w1, w2, vk−1, vk} is the tree T ′1 obtained from T1 at the end of game
and γrg(T1) = γr2(T

′
1).

Let f be a γr2(T
′)-function. Clearly |f(w1)| + |f(vk−1)| + |f(vk)| = 2, |f(w2)| +

|f(z2)|+ |f(z1)| = 2, and the function g : V (T ′1)→ P({1, 2}) defined by g(vk−2) = {1}
and g(x) = f(x) for each x ∈ V (T ′1) − {vk−2}, is a 2RDF of T ′1 of weight ω(f) − 3.
Hence γr2(T

′) = ω(f) = ω(g) + 3 ≥ γr2(T
′
1) + 3 ≥ dn−4+2

2
e+ 3 > dn+2

2
e.

Case 2. degT (vk−2) ≥ 3 and vk−2 is adjacent to two leaves z1, z2.
Let T1 = T − {vk−1, vk, z1, z2}. Player A plays according to an optimal strategy on
T1 as long as D marks edges of T1, and when D marks an edge in {vk−2vk−1, vk−1vk}
then A subdivides the other edge in {vk−2vk−1, vk−1vk} and when D marks an edge
in {vk−2z2, vk−2z1} then A subdivides the other edge in {vk−2z2, vk−2z1}. Let T ′ be
the tree obtained at the end of the game. As above, one can see that γr2(T

′) ≥
dn−4+2

2
e+ 3 > dn+2

2
e.

Case 3. degT (vk−2) = 3 and vk−2 is adjacent to the leaf z1.
Let T1 = T −{vk−2, vk−1, vk, z1}. Player A plays according to an optimal strategy on
T1 as long as D marks an edge of T1, and when D marks an edge in {vk−2vk−1, vk−1vk}
then A subdivides the other edge in {vk−2vk−1, vk−1vk} and when D marks an edge
in {vk−2vk−3, vk−2z1} then A subdivides the other edge in {vk−2vk−3, vk−2z1}. If T ′ is
the tree obtained at the end of the game then as above, we can see that γr2(T

′) ≥
dn−4+2

2
e+ 3 > dn+2

2
e.

Similarly, we may assume deg(v3) = 2.
We now return to the proof of theorem. If diam(T ) = 4, then T = P5 and clearly

γrg(T ) = 4 = dn+2
2
e. If diam(T ) = 5 or diam(T ) = 6 and deg(v4) = 1, then T = P6, P7

and γrg(T ) > dn+2
2
e by Example 3. Let diam(T ) > 6 or deg(v4) ≥ 3. Suppose

T1 = T − {v1, v2, v3, vk−2, vk−1, vk}. Player A plays according to an optimal strategy
on T1 as long as D marks edges of T1, and when D marks an edge in {vk−2vk−1, vk−1vk}
then A subdivides the other edge in {vk−2vk−1, vk−1vk}, when D marks an edge in
{v1v2, v2v3} then A subdivides the other edge in {v1v2, v2v3} and when D marks
an edge in {vk−2vk−3, v3v4} then A subdivides the other edge in {vk−2vk−3, v3v4}.
If T ′ is the tree obtained at the end of the game, then it is not hard to see that
γr2(T

′) ≥ dn−4+2
2
e+ 3 > dn+2

2
e.

All in all, we have γr2(T
′) ≥ dn+2

2
e with equality if and only if T = P5 or T is a

star. This completes the proof.

A support vertex is said to be end-support vertex if all its neighbors except one of
them are leaves.

Theorem 8. For any tree T of order n ≥ 2,

γrg(T ) ≤ n.
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Proof. The proof is by induction on n. If n = 2, 3, then obviously, γrg(T ) = n. Let
n ≥ 4. Assume that the result is true for any non-trivial tree of order less than n, and
let T be a tree of order n. If T is a star, then γrg(T ) < n by Example 1 and n ≥ 4.
If T is a double star, then it follows from Examples 6 and 7 that γrg(T ) ≤ n with
equality if and only if T = DS1,2 or DS2,2. Assume that T is not a star or a double
star. Then diam(T ) ≥ 4. Let x be an end-support vertex of degree degT (x) = t of T ,
y1, y2, · · · , yt−1 the leaves attached at x, and z the neighbor of x of degree at least 2.
The tree T1 = T − {x, y1, y2, · · · , yt−1} has order at least two. In the following three
cases, we define a strategy for D and denote by T ′ and T ′1 the trees obtained from T
and T1 at the end of the game.

Case 1. The tree T has an end-support vertex of degree at least 5.
Player D plays following its best strategy on T1 as long as A subdivides edges of
T1. When A subdivides an edge of {xz, xy1, . . . , xyt−1}, then D marks a free edge in
{xy1, . . . , xyt−1}. It is easy to see that γr2(T

′) ≤ γr2(T
′
1) + b t

2
c + 2. Hence, by the

induction hypothesis and t ≥ 5,

γrg(T ) = γr2(T
′) ≤ γr2(T

′
1) + b t

2
c+ 2 = γrg(T

′
1) + b t

2
c+ 2 ≤ n− t+ b t

2
c+ 2 < n.

Case 2. T admits two end-support vertices x, x′ of degree 4.
Assume that y′1, y′2, y′3 are the leaves attached at x′, and z′ the neighbor of x′ of
degree at least 2. Suppose that T2 = T − {x, y1, y2, y3, x′, y′1, y′2, y′3}. If T2 = K1,
then z = z′ and it is easy to see that γrg(T ) < n. Let T2 have order at least two. The
strategy of D is that he plays its best strategy on T2 as long as A subdivides edges of
T2. When A subdivides an edge of {xy1, xy2, xy3, x′y′1, x′y′2, x′y′3}, D marks a free
edge of {xy1, xy2, xy3, x′y′1, x′y′2, x′y′3} and when A subdivides an edge in {xz, x′z′},
D marks the other edge in {xz, x′z′}. Clearly γr2(T

′) ≤ γr2(T
′
2) + 7. By the inductive

hypothesis, we have

γrg(T ) = γr2(T
′) ≤ γr2(T

′
2) + 7 = γrg(T2) + 7 ≤ n− 8 + 7 < n.

Case 3. All the end-support vertices of T have degree at most 4 and at most one of
them has degree 4.
Let x be an end-support vertex of degree t. Player D plays following its best strat-
egy on T1 as long as A subdivides edges of T1. When A subdivides an edge of
{xy1, xy2, · · · , xyt−1, xz}, D marks an edge of {xy1, xy2, · · · , xyt−1} if possible, oth-
erwise the edge xz if still free, otherwise any other free edge of T1. At the end of
the game, at most b t

2
c edges of xy1, xy2, · · · , xyt−1 are subdivided. It is easy to see

that γr2(T
′) ≤ γr2(T

′
1) + 2 when t = 2 and γr2(T

′) ≤ γr2(T
′
1) + 2 + b t

2
c when t = 3, 4.

It follows from induction hypothesis that γrg(T ) ≤ γr2(T
′) ≤ n and the proof is

complete.

References
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