SOME RESULTS ON A GENERALIZED SASAKIAN-SPACE-FORM ADMITTING TRANS-SASAKIAN STRUCTURE WITH RESPECT TO A GENERALIZED TANAKA WEBSTER OKUMURA CONNECTION

ALI AKBAR AND A. SARKAR

ABSTRACT. The object of the present paper is to study generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection. Locally ϕ -symmetric as well as η - recurrent generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection have also been studied in the present paper.

Mathematics Subject Classification (2010): 53C25, 53D15.

Keywords: Locally ϕ -symmetric, generalized Tanaka Webster Okumura connection, generalized Sasakian-space-forms.

Article history: Received 5 April 2014 Received in revised form 28 March 2015 Accepted 31 August 2015

1. Introduction

The notion of generalized Sasakian-space-forms was introduced by P. Alerge, D. Blair and A. Carriazo (see [1]). These space-forms are defined as follows:

Given an almost contact metric manifold $M(\phi, \xi, \eta, g)$, we say that M is generalized Sasakian-spaceforms if there exist three functions f_1 , f_2 , f_3 on M such that the curvature tensor R of M is given by

(1.1)
$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} \\ + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} \\ + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X \\ + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\},$$

for any vector fields X, Y, Z on M. In such a case we denote the manifold as $M(f_1, f_2, f_3)$. Generalized sasakian-space-forms have been studied in the papers [8], [9].

In 1985 J. A. Oubina (see [17]) introduced a new class of almost contact metric manifolds, called trans-Sasakian manifolds, which includes Sasakian, Kenmotso and Cosymplectic structures. The authors in the papers [3], [5] and [6] studied such manifolds and obtained some interesting results. In the paper [16] the author studied conformally flat ϕ -recurrent trans-Sasakian manifolds. It is known that (see [12]) trans-Sasakian structure of type (0, 0), $(0, \beta)$ and $(\alpha, 0)$ are Cosymplectic, β -Kenmotsu and α -Sasakian respectively, where $\alpha, \beta \in R$. In [15] J. C. Marrero has shown that a trans-Sasakian manifold of dimension $n \geq 5$ is either Cosymplectic or α -Sasakian or β -Kenmotsu manifold. In the paper [2], contact metric and trans-Sasakian generalized Sasakian-space-forms have been studied. The notion of generalized Tanaka Webster Okumura connection was introduced and studied by the authors in the paper [11]. In the present paper we have studied generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection. The present paper is organized as follows.

After introduction in Section 1 we give some preliminaries in Section 2. Section 3 is concern with the study of locally ϕ -symmetric generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection. Section 4 is devoted to the study of η - recurrent generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection.

2. Preliminaries

Let M be a (2n+1)-dimensional connected differentiable manifold endowed with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a tensor field of type (1, 1), ξ is a vector field, η is an 1-form and g is a Riemannian metric on M such that (see [4])

(2.1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1.$$

$$(2.2) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in T(M).$$

Then also

(2.3)
$$\phi \xi = 0, \quad \eta(\phi X) = 0, \quad \eta(X) = g(X, \xi).$$

$$q(\phi X, X) = 0.$$

An almost contact metric manifold $M^{2n+1}(\phi, \xi, \eta, g)$ is said to be a trans-Sasakian manifold (see [17]) if $(M^{2n+1} \times R, J, G)$ belongs to the class W_4 (see [10]) of the Hermitian manifolds, where J is the almost complex structure on $M^{2n+1} \times R$ defined by (see [7])

(2.5)
$$J(Z, f\frac{d}{dt}) = (\phi Z - f\xi, \eta(Z)\frac{d}{dt}),$$

for any vector field Z on M^{2n+1} and smooth function f on $M^{2n+1} \times R$ and G is the Hermitian metric on the product $M^{2n+1} \times R$. This may be expressed by the condition (see [17])

$$(2.6) \qquad (\nabla_X \phi) Y = \alpha(g(X, Y)\xi - \eta(Y)X) + \beta(g(\phi X, Y)\xi - \eta(Y)\phi X),$$

for some smooth functions α and β on M^{2n+1} , and we say that the trans-Sasakian structure is of type (α, β) .

From equation (2.6) it follows that (see [6])

(2.7)
$$\nabla_X \xi = -\alpha \phi X + \beta (X - \eta(X)\xi),$$

(2.8)
$$(\nabla_X \eta) Y = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y).$$

In a (2n+1)-dimensional trans-Sasakian manifold from (2.6), (2.7) and (2.8) we can write (see [6])

(2.9)
$$R(X,Y)\xi = (\alpha^2 - \beta^2)\{\eta(Y)X - \eta(X)Y\} + 2\alpha\beta\{\eta(Y)\phi X - \eta(X)\phi Y\} - (X\alpha)\phi Y + (Y\alpha)\phi X - (X\beta)\phi^2 Y + (Y\beta)\phi^2 X.$$

(2.10)
$$S(X,\xi) = \{2n(\alpha^2 - \beta^2) - \xi\beta\}\eta(X) - (2n-1)X\beta - (\phi X)\alpha,$$

where S is the Ricci tensor.

Further we have

$$(2.11) 2\alpha\beta + \xi\alpha = 0.$$

Again we know that (see [1]) in a generalized Sasakian-space-form

(2.12)
$$R(X,Y)Z = f_1\{g(Y,Z)X - g(X,Z)Y\} + f_2\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} + f_3\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\},$$

for any vector fields X, Y, Z on M, where R denotes the curvature tensor of M and f_1, f_2, f_3 are smooth functions on the manifold. The Ricci operator Q, Ricci tensor S and the scalar curvature r of the manifold of dimension (2n+1) are respectively given by (see [13])

$$QX = (2nf_1 + 3f_2 - f_3)X - (3f_2 + (2n-1)f_3)\eta(X)\xi,$$

$$(2.14) S(X,Y) = (2nf_1 + 3f_2 - f_3)g(X,Y) - (3f_2 + (2n-1)f_3)\eta(X)\eta(Y),$$

$$(2.15) r = 2n(2n+1)f_1 + 6nf_2 - 4nf_3.$$

The generalized Tanaka Webster Okumura connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ are related by (see [11])

(2.16)
$$\tilde{\nabla}_X Y = \nabla_X Y + A(X, Y)$$

for all vectors fields X, Y on M and

(2.17)
$$A(X,Y) = \alpha \{ g(X,\phi Y)\xi + \eta(Y)\phi X \} + \beta \{ g(X,Y)\xi - \eta(Y)X \} - l\eta(X)\phi Y,$$

where l is a real constant.

We suppose that the vector fields X, Y, Z and W are orthogonal to ξ . Then from relations (2.16) and (2.17) we get

(2.18)
$$\tilde{\nabla}_X Y = \nabla_X Y + \{\alpha g(X, \phi Y) + \beta g(X, Y)\} \xi.$$

We can write from (2.18)

(2.19)
$$\tilde{\nabla}_Y Z = \nabla_Y Z + \{\alpha g(Y, \phi Z) + \beta g(Y, Z)\} \xi.$$

Applying $\tilde{\nabla}_X$ on both side of (2.19) we get

Using (2.19) in (2.20) we obtain

(2.21)
$$\tilde{\nabla}_{X}\tilde{\nabla}_{Y}Z = \nabla_{X}\nabla_{Y}Z + \{\alpha g(X,\phi\nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z)\}\xi \\
+ \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}\nabla_{X}\xi + \alpha g(Y,\nabla_{X}\phi Z)\xi \\
= \nabla_{X}\nabla_{Y}Z + \{\alpha g(X,\phi\nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}\xi \\
+ \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}\nabla_{X}\xi.$$

Interchanging X and Y in (2.21) we get

Also by using (2.18) we get

$$\tilde{\nabla}_{[X,Y]}Z = \nabla_{[X,Y]}Z + \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}\xi.$$

We know that

(2.24)
$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

and

(2.25)
$$\tilde{R}(X,Y)Z = \tilde{\nabla}_X \tilde{\nabla}_Y Z - \tilde{\nabla}_Y \tilde{\nabla}_X Z - \tilde{\nabla}_{[X,Y]} Z.$$

In view of (2.21), (2.22), (2.23) and (2.24) in (2.25) we get

(2.26)
$$\ddot{R}(X,Y)Z = R(X,Y)Z + \{\alpha g(X,\phi\nabla_Y Z) + \beta g(X,\nabla_Y Z) + \alpha g(Y,\nabla_X \phi Z)\}\xi \\
- \{\alpha g(X,\phi\nabla_Y Z) + \beta g(X,\nabla_Y Z) + \alpha g(Y,\nabla_X \phi Z)\}\xi \\
- \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}\xi \\
+ \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}\nabla_X \xi - \{\alpha g(X,\phi Z) + \beta g(X,Z)\}\nabla_Y \xi.$$

This is the relation between the curvature tensors \tilde{R} and R with respect to a generalized Tanaka Webster Okumura connection $\tilde{\nabla}$ and the Levi-Civita connection ∇ respectively when the vector fields X, Y and Z are orthogonal to ξ .

3. Locally ϕ -symmetric generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection

Definition 3.1. A Sasakian manifold M^n is said to be locally ϕ -symmetric if

(3.1)
$$\phi^{2}((\nabla_{W}R)(X,Y)Z) = 0,$$

for all vector fields X, Y, Z, W orthogonal to ξ . This notion was introduced by T. Takahashi for Sasakian manifolds (see [18]).

Analogous to the definition of locally ϕ -symmetric Sasakian manifolds with respect to Levi-Civita connection we define locally ϕ - symmetric generalized Sasakian-space-forms admitting trans-sasakian structure with respect to a generalized Tanaka Webster Okumura connection by

(3.2)
$$\phi^2((\tilde{\nabla}_W R)(X, Y)Z) = 0,$$

for all vector fields X, Y, Z and W orthogonal to ξ .

In view of (1.1) and (2.7) we obtain from (2.26)

$$\tilde{R}(X,Y)Z = f_{1}\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ f_{2}\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_{3}\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$

$$+ \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}\xi$$

$$- \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}\xi$$

$$- \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}\xi$$

$$+ \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}(-\alpha \phi X + \beta X)$$

$$- \{\alpha g(X,\phi Z) + \beta g(X,Z)\}(-\alpha \phi Y + \beta Y).$$

Differentiating both side of (3.3) covariantly by W with respect to the Levi-Civita connection ∇ we get

```
(\nabla_W \tilde{R})(X,Y)Z = df_1(W)\{g(Y,Z)X - g(X,Z)Y\}
                                             + df_2(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}
                                             + f_2\{g(X,\phi Z)(\nabla_W\phi)Y+g(X,(\nabla_W\phi)Z)\phi Y
                                             -g(Y,\phi Z)(\nabla_W\phi)X-g(Y,(\nabla_W\phi)Z)\phi X
                                             + 2g(X, \phi Y)(\nabla_W \phi)Z + 2g(X, (\nabla_W \phi)Y)\phi Z}
                                             + df_3(W)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X
                                                 g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi
                                                  f_3\{(\nabla_W\eta)(X)\eta(Z)Y+\eta(X)(\nabla_W\eta)(Z)Y
                                                 (\nabla_W \eta)(Y)\eta(Z)X - \eta(Y)(\nabla_W \eta)(Z)X
                                             + g(X,Z)(\nabla_W\eta)(Y)\xi + g(X,Z)\eta(Y)(\nabla_W\xi)
(3.4)
                                                  g(Y,Z)(\nabla_W \eta)(X)\xi - g(Y,Z)\eta(X)(\nabla_W \xi)
                                                 \{\alpha g(X, \phi \nabla_Y Z) + \beta g(X, \nabla_Y Z) + \alpha g(Y, \nabla_X \phi Z)\}\nabla_W \xi
                                                  \{\alpha g(X, \phi \nabla_Y Z) + \beta g(X, \nabla_Y Z) + \alpha g(Y, \nabla_X \phi Z)\}\nabla_W \xi
                                                  \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\} \nabla_W \xi
                                                   \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}(-\alpha(\nabla_W \phi)X + \beta \nabla_W X)
                                                   \{\alpha g(X, \phi Z) + \beta g(X, Z)\}(-\alpha(\nabla_W \phi)Y + \beta \nabla_W Y)
                                             + \{\alpha g(X, (\nabla_W \phi) \nabla_Y Z) + \beta g(X, \nabla_W \nabla_Y Z) + \alpha g(Y, \nabla_W \nabla_X \phi Z)\} \xi
                                             - \{\alpha g(X, (\nabla_W \phi) \nabla_Y Z) + \beta g(X, \nabla_W \nabla_Y Z) + \alpha g(Y, \nabla_W \nabla_X \phi Z)\} \xi
                                             -\alpha\{g([X,Y],(\nabla_W\phi)Z)+\beta g(\nabla_W[X,Y],Z)\}\xi
                                             + \alpha g(Y, (\nabla_W \phi) Z)(-\alpha \phi X + \beta X)
                                                  \alpha g(X, (\nabla_W \phi) Z)(-\alpha \phi Y + \beta Y).
```

Using (2.19) we can write

$$(3.5) \qquad (\tilde{\nabla}_W \tilde{R})(X,Y)Z = (\nabla_W \tilde{R})(X,Y)Z + \{\alpha g(W, \phi \tilde{R}(X,Y)Z) + \beta g(W, \tilde{R}(X,Y)Z)\}\xi.$$

Using relation (3.5) in equation (3.4) we obtain

$$(\tilde{\nabla}_W \tilde{R})(X,Y)Z = df_1(W)\{g(Y,Z)X - g(X,Z)Y\}$$

$$+ df_2(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}$$

$$+ f_2\{g(X,\phi Z)(\nabla_W \phi)Y + g(X,(\nabla_W \phi)Z)\phi Y$$

$$- g(Y,\phi Z)(\nabla_W \phi)X - g(Y,(\nabla_W \phi)Z)\phi X$$

$$+ 2g(X,\phi Y)(\nabla_W \phi)Z + 2g(X,(\nabla_W \phi)Y)\phi Z\}$$

$$+ df_3(W)\{\eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X$$

$$+ g(X,Z)\eta(Y)\xi - g(Y,Z)\eta(X)\xi\}$$

$$+ f_3\{(\nabla_W \eta)(X)\eta(Z)Y + \eta(X)(\nabla_W \eta)(Z)Y$$

$$- (\nabla_W \eta)(Y)\eta(Z)X - \eta(Y)(\nabla_W \eta)(Z)X$$

$$+ g(X,Z)(\nabla_W \eta)(X)\xi - g(Y,Z)\eta(X)(\nabla_W \xi)\}$$

$$- g(Y,Z)(\nabla_W \eta)(X)\xi - g(Y,Z)\eta(X)(\nabla_W \xi)\}$$

$$+ \{\alpha g(X,\phi \nabla_Y Z) + \beta g(X,\nabla_Y Z) + \alpha g(Y,\nabla_X \phi Z)\}\nabla_W \xi$$

$$- \alpha \{g([X,Y],\phi Z) + \beta g(X,\nabla_Y Z) + \alpha g(Y,\nabla_X \phi Z)\}\xi$$

$$+ \{\alpha g(X,\phi Z) + \beta g(X,Z)\}(-\alpha(\nabla_W \phi)Y + \beta \nabla_W Y)$$

$$+ \{\alpha g(X,\phi Z) + \beta g(X,Z)\}(-\alpha(\nabla_W \phi)Y + \beta \nabla_W Y)$$

$$+ \{\alpha g(X,(\nabla_W \phi)\nabla_Y Z) + \beta g(X,\nabla_W \nabla_Y Z) + \alpha g(Y,\nabla_W \nabla_X \phi Z)\}\xi$$

$$- \alpha \{g([X,Y],(\nabla_W \phi)Y Z) + \beta g(X,\nabla_W Y_Y Z) + \alpha g(Y,\nabla_W \nabla_X \phi Z)\}\xi$$

$$- \alpha \{g([X,Y],(\nabla_W \phi)Z) + \beta g(X,\nabla_W Y_Y Z) + \alpha g(Y,\nabla_W \nabla_X \phi Z)\}\xi$$

$$+ \alpha g(Y,(\nabla_W \phi)Z)(-\alpha \phi X + \beta X)$$

$$- \alpha g(X,(\nabla_W \phi)Z)(-\alpha \phi X + \beta X)$$

$$- \alpha g(X,(\nabla_W \phi)Z)(-\alpha \phi Y + \beta Y)$$

$$+ \{\alpha g(W,\phi \tilde{R}(X,Y)Z) + \beta g(W,\tilde{R}(X,Y)Z)\}\xi .$$

We consider X, Y, Z and W orthogonal to ξ and using relation (2.6), (2.7), (2.8) in equation (3.6) we obtain

```
(\tilde{\nabla}_W \tilde{R})(X, Y)Z = df_1(W)\{g(Y, Z)X - g(X, Z)Y\}
                                               + df_2(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}
                                               + f_2\{g(X,\phi Z)(\nabla_W\phi)Y+g(X,(\nabla_W\phi)Z)\phi Y
                                                     g(Y, \phi Z)(\nabla_W \phi)X - g(Y, (\nabla_W \phi)Z)\phi X
                                               + 2g(X, \phi Y)(\nabla_W \phi)Z + 2g(X, (\nabla_W \phi)Y)\phi Z}
                                               + \{\alpha g(X, \phi \nabla_Y Z) + \beta g(X, \nabla_Y Z) + \alpha g(Y, \nabla_X \phi Z)\}(-\alpha \phi W + \beta W)
                                                    \{\alpha g(X, \phi \nabla_Y Z) + \beta g(X, \nabla_Y Z) + \alpha g(Y, \nabla_X \phi Z)\}(-\alpha \phi W + \beta W)
                                               - \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}(-\alpha \phi W + \beta W)
(3.7)
                                               + \{\alpha g(Y, \phi Z) + \beta g(Y, Z)\}(-\alpha(\nabla_W \phi)X + \beta \nabla_W X)
                                                     \{\alpha g(X, \phi Z) + \beta g(X, Z)\}(-\alpha(\nabla_W \phi)Y + \beta \nabla_W Y)
                                                    \{\alpha g(X, (\nabla_W \phi) \nabla_Y Z) + \beta g(X, \nabla_W \nabla_Y Z) + \alpha g(Y, \nabla_W \nabla_X \phi Z)\} \xi
                                                     \{\alpha g(X, (\nabla_W \phi) \nabla_Y Z) + \beta g(X, \nabla_W \nabla_Y Z) + \alpha g(Y, \nabla_W \nabla_X \phi Z)\} \xi
                                                    \alpha\{g([X,Y],\nabla_W\phi Z)+\beta g(\nabla_W[X,Y],Z)\}\xi
                                               + \alpha g(Y, (\nabla_W \phi) Z)(-\alpha \phi X + \beta X)
                                               -\alpha g(X, (\nabla_W \phi)Z)(-\alpha \phi Y + \beta Y)
                                               + \{\alpha g(W, \phi \tilde{R}(X, Y)Z) + \beta g(W, \tilde{R}(X, Y)Z)\}\xi.
```

After using relation (2.6) in (3.7) we apply ϕ^2 on both side and then we get

$$\phi^{2}((\tilde{\nabla}_{W}\tilde{R})(X,Y)Z) = -df_{1}(W)\{g(Y,Z)X - g(X,Z)Y\} \\ - df_{2}(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\} \\ - \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}(-\alpha\phi W + \beta W) \\ + \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}(-\alpha\phi W + \beta W) \\ + \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}(-\alpha\phi W + \beta W) \\ + \{\alpha g(Y,\phi Z) + \beta g(Y,Z)\}\{\beta\phi^{2}(\nabla_{W}X)\} \\ - \{\alpha g(X,\phi Z) + \beta g(X,Z)\}\{\beta\phi^{2}(\nabla_{W}Y)\}.$$

Suppose α is a constant, then by (2.11) we get $\beta = 0$. In such a case from equation (3.8) we get

$$\phi^{2}((\tilde{\nabla}_{W}\tilde{R})(X,Y)Z) = -df_{1}(W)\{g(Y,Z)X - g(X,Z)Y\}
- df_{2}(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}
- \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}(-\alpha\phi W)
+ \{\alpha g(X,\phi \nabla_{Y}Z) + \beta g(X,\nabla_{Y}Z) + \alpha g(Y,\nabla_{X}\phi Z)\}(-\alpha\phi W)
+ \alpha \{g([X,Y],\phi Z) + \beta g([X,Y],Z)\}(-\alpha\phi W).$$

Taking inner product on both side of (3.9) with respect to W we get

$$(3.10) g(\phi^{2}((\tilde{\nabla}_{W}\tilde{R})(X,Y)Z),W) = -df_{1}(W)\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\} \\ - df_{2}(W)\{g(X,\phi Z)g(\phi Y,W) - g(Y,\phi Z)g(\phi X,W) \\ + 2g(X,\phi Y)g(\phi Z,W)\}.$$

Since the above relation is true for any vector field W, so we can write from (3.10)

(3.11)
$$\phi^{2}((\tilde{\nabla}_{W}\tilde{R})(X,Y)Z) = -df_{1}(W)\{g(Y,Z)X - g(X,Z)Y\} - df_{2}(W)\{g(X,\phi Z)\phi Y - g(Y,\phi Z)\phi X + 2g(X,\phi Y)\phi Z\}.$$

Thus we are in a position to state the following result:

Theorem 3.2. A Generalized Sasakian-space-form admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection is locally ϕ -symmetric if and only if f_1 and f_2 are constants provided α is constant.

4. η - recurrent generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection

Definition 4.1. A (2n+1)-dimensional generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection $\tilde{\nabla}$ is said to be η - recurrent Ricci tensor if there exist a non-zero 1-form A such that

$$(\tilde{\nabla}_X \tilde{S})(\phi Y, \phi Z) = A(X)\tilde{S}(Y, Z).$$

If a 1-form A vanishes on M then the space-form is said to have η -parallel Ricci tensor. The notion of η -parallel Ricci tensor was introduced by Kon in the context of Sasakian geometry (see [14]).

Taking inner product on both side of (2.26) with respect to a horizontal vector field W and contracting between Y and Z we get

$$\tilde{S}(X,W) = (2nf_1 + 3f_2 - f_3 + \alpha^2)g(X,W).$$

$$\tilde{Q}X = (2nf_1 + 3f_2 - f_3 + \alpha^2)X$$

$$\tilde{r} = (2n+1)(2nf_1 + 3f_2 - f_3 + \alpha^2)$$

where \tilde{S} , \tilde{Q} , \tilde{r} are respectively the Ricci tensor, the Ricci operator and the scalar curvature of generalized Sasakian-space-forms admitting trans-Sasakian structure with respect to a generalized Tanaka Webster

Okumura connection and α is constant.

Differentiating both side of (4.2) covariantly by W with respect to the connection $\tilde{\nabla}$ we obtain

(4.5)
$$(\tilde{\nabla}_W \tilde{S})(\phi Y, \phi Z) = d(2nf_1 + 3f_2 - f_3 + \alpha^2)(W)g(Y, Z).$$

Suppose that the space forms M is η - recurrent. Then in view of (4.5) we obtain from (4.1)

(4.6)
$$d(2nf_1 + 3f_2 - f_3 + \alpha^2)(W)g(Y, Z) = A(X)S(\tilde{Y}, Z).$$

In view of (4.2) we get from above

(4.7)
$$d(2nf_1 + 3f_2 - f_3 + \alpha^2)(W) = A(X)(2nf_1 + 3f_2 - f_3 + \alpha^2).$$

Let $(2nf_1 + 3f_2 - f_3 + \alpha^2) = f$. Then (4.7) reduces to

$$(4.8) fA(W) = df(W).$$

From (4.8) we get

$$(4.9) df(Y)A(W) + (\tilde{\nabla}_Y A)(W)f = d^2 f(W, Y).$$

Interchanging Y and W in above we get

(4.10)
$$df(W)A(Y) + (\tilde{\nabla}_W A)(Y)f = d^2 f(Y, W).$$

Subtracting (4.10) from (4.9) we get

$$(4.11) \qquad (\tilde{\nabla}_W A)(Y) - (\tilde{\nabla}_Y A)(W) = 0.$$

Hence the 1-form A is closed.

Thus we have the following result:

Theorem 4.2. In an η - recurrent generalized Sasakian-space-form admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection the 1-form A is closed.

Since A(W) is non-zero, the equation (4.7) leads us to the following:

Theorem 4.3. If a (2n+1)- dimensional generalized Sasakian-space-form admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection has η - recurrent Ricci tensor, then $(2nf_1 + 3f_2 - f_3 + \alpha^2)$ can never be a non-zero constant.

In view of (4.5) we also have the following result:

Theorem 4.4. A (2n+1)- dimensional generalized Sasakian-space-form admitting trans-Sasakian structure with respect to a generalized Tanaka Webster Okumura connection has η - parallel Ricci tensor if and only if $(2nf_1 + 3f_2 - f_3 + \alpha^2)$ is constant.

Acknowledgement: The authors are thankful to the referee for his valuable suggestions for the improvement of the paper.

References

- [1] P. Alerge, D. E. Blair and A. Carriazo, Generalized Sasakian-space-forms, Israel J. Math., 14(2004), 157-182).
- [2] P. Alegre and A. Carriazo, Structures on generalized Sasakian-space-forms, Differential Geometry and its Applications, 26(6)(2008),656-666.
- [3] C. S. Bagewadi and E. Girish Kumar, *Note on trans-Sasakian manifolds*, Tensor(N.S.), 65(2004),80-88.
- [4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. No. 509. Springer 1976.
- [5] D. E. Blair, and J. A. Oubina, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Matematiques 34(1990), 199-207.

- [6] U. C. De and M. M. Tripathi, Ricci tensor in three dimension trans-Sasakian manifolds, Kyungpook Math. J. 43(2) (2003), 247-255.
- [7] U. C. De and A. A. Shaikh, Complex manifolds and contact manifolds, Narosa Publication House Pvt. Ltd., 2009.
- [8] U. C. De and A. Sarkar, On the Projective Curvature Tensor of Generalized Sasakian-space-forms, Quaestiones Mathematicae, 33(2010), 245-252.
- [9] U. C. De and A. Sarkar, Some results on Generalized Sasakian-space-forms, Thai. J. Math. 8, 1(2010), 1-10.
- [10] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. pura Appl. (4) 123 (1980), 35-58.
- [11] J. Inoguchi and J. E. Lee, Affine biharmonic curves in 3-dimensional homogeneous geometries, Mediterr. J. Math. 10(2013), 571-592.
- [12] D. Janssens and L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J. 4(1981), 1-27.
- [13] U. K. Kim, Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-space-forms, Note di matemetica, 26(2006), 55-67.
- [14] M. Kon, Invariant submanifolds in Sasakian manifolds, Math. Ann., 219(1976), 277-290.
- [15] J. C. Marrero, The local structure of trans-Sasakian manifolds, Ann. Mat. Pura Appl. 162(4)(1992), 77-86
- [16] H. G. Nagaraja, φ recurrent trans-Sasakian manifolds, Mate. Bechnk 63(2011), 79-86.
- [17] J. A. Oubina, New class of almost contact metric manifolds, Publ. Math. Debrecen 32(1985), 187-193.
- [18] T. Takahashi, Sasakian φ-symmetric spaces, Tohoku Math. J., 29(1977), 91-113.

ALI AKBAR, DEPARTMENT OF MATHEMATICS, RAMPURHAT COLLEGE, BIRBHUM- 731224, WEST BENGAL, INDIA

E-mail address: aliakbar.akbar@rediffmail.com

AVIJIT SARKAR, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KALYANI, KALYANI- 741235, WEST BENGAL, INDIA

E-mail address: avjaj@yahoo.co.in