Fourier transform of Dini-Lipschitz functions in the space $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$

A. Abouelaz ${ }^{1}$, R. Daher ${ }^{2}$ and M. El Hamma ${ }^{3}$
Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco
${ }^{1}$ ah.abouelaz@gmail.com, ${ }^{2}$ rjdaher024@gmail.com, ${ }^{3}$ m_elhamma@yahoo.fr

Abstract

Using a spherical mean operator, we obtain an analog and a generalization of Younis's Theorem 5.2 in [5] for the Fourier transform in the space $L^{2}\left(\mathbb{R}^{n}\right)$.

Keywords: Fourier transform, Spherical mean operator.
Mathematics Subject Classification: 42A38, 42B10 .

1 Introduction and preliminaries

The Fourier transform, as well as Fourier series, is widely used in various fields of calculus, mathematical physics...

In [5], Younis proved an estimate for the Fourier transform in the space $L^{2}(\mathbb{R})$. In this paper, we prove an analog and a generalization of this estimate in the space $L^{2}\left(\mathbb{R}^{n}\right)$.

Assume that $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$ is the Hilbert space of 2-power integrable function $f: \mathbb{R}^{n} \longrightarrow \mathbb{C}$ with the norm

$$
\|f\|_{2}=\left(\int_{\mathbb{R}^{n}}|f(x)|^{2} d x\right)^{1 / 2}
$$

Let $f(x) \in \mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$. The Fourier transform \widehat{f} of f is defined by

$$
\widehat{f}(\xi)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} f(x) e^{-i \xi \cdot x} d x
$$

The inverse formula of Fourier transform is defined by

$$
f(x)=\frac{1}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{i \xi \cdot x} d \xi
$$

We have from [3] the Parseval's equality

$$
\begin{equation*}
\|\widehat{f}\|_{2}=\|f\|_{2} \tag{1}
\end{equation*}
$$

Consider in $L^{2}\left(\mathbb{R}^{n}\right)$ the spherical mean operator (see [2])

$$
\mathrm{M}_{h} f(x)=\frac{1}{w_{n-1}} \int_{\mathbb{S}^{n-1}} f(x+h w) d w,
$$

where \mathbb{S}^{n-1} is the unit sphere in \mathbb{R}^{n}, w_{n-1} its total surface measure with respect to the usual induced measure $d w$.

For $\alpha \geq-\frac{1}{2}$, we introduce the normalized spherical Bessel function j_{α} defined by

$$
j_{\alpha}(z)=\Gamma(\alpha+1) \sum_{j=0}^{\infty} \frac{(-1)^{j}(z / 2)^{2 j}}{j!\Gamma(j+\alpha+1)}, z \in \mathbb{C} .
$$

Lemma 1.1 For $x \in \mathbb{R}$ the following inequalities are fulfilled

1. $\left|j_{\alpha}(x)\right| \leq 1$,
2. $\left|1-j_{\alpha}(x)\right| \leq|x|$,
3. $\left|1-j_{\alpha}(x)\right| \geq c$ with $|x| \geq 1$, where $c>0$ is a certain constant which depends only on α.

Proof. Similarly as the proof of Lemma 2.9 in [1]
Lemma 1.2 Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$, then

$$
\widehat{\left(M_{h} f\right)}(\xi)=j_{\frac{n-2}{2}}(h|\xi|) \widehat{f}(\xi) .
$$

Proof. The statement follows easily from representation of Fourier transform of radial functions (see [4], Chapter IV).

2 Main Result

In this section we give the main result of this paper.
Theorem 2.1 Let $f(x)$ belong to $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$, and let

$$
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}=O\left(\frac{h^{\alpha}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \alpha>0, \gamma>0
$$

as $h \longrightarrow 0$. Then

$$
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi=O\left(r^{-2 \alpha}(\log r)^{-2 \gamma}\right) \text { as } r \longrightarrow+\infty
$$

Proof. We have

$$
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}=O\left(\frac{h^{\alpha}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \text { as } h \longrightarrow 0
$$

If $|\xi| \in\left[\frac{1}{h}, \frac{2}{h}\right]$, then $h|\xi| \geq 1$, and (3) of Lemma 1.1 implies that

$$
\begin{equation*}
\left.1 \leq \frac{1}{c^{2}}\left|1-j_{\frac{n-2}{2}}(h \mid \xi)\right|\right)\left.\right|^{2} . \tag{2}
\end{equation*}
$$

Lemma 1.2 and Parseval's equality (1) give

$$
\begin{equation*}
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}^{2}=\int_{\mathbb{R}^{n}}\left|1-j_{\frac{n-2}{2}}(h|\xi|)\right|^{2}|\widehat{f}(\xi)|^{2} d \xi \tag{3}
\end{equation*}
$$

Hence, by (1) and Lemma 1.2, it follows that

$$
\begin{aligned}
\int_{1 / h \leq|\xi| \leq 2 / h}|\widehat{f}(\xi)|^{2} d \xi & \left.\leq \frac{1}{c^{2}} \int_{1 / h \leq|\xi| \leq 2 / h}\left|1-j_{\frac{n-2}{2}}(h \mid \xi)\right|\right)\left.\right|^{2}|\widehat{f}(\xi)|^{2} d \xi \\
& \left.\leq \frac{1}{c^{2}} \int_{\mathbb{R}^{n}}\left|1-j_{\frac{n-2}{2}}(h \mid \xi)\right|\right)\left.\right|^{2}|\widehat{f}(\xi)|^{2} d \xi \\
& =\frac{1}{c^{2}}\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}^{2} \\
& =O\left(\frac{h^{2 \alpha}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
\end{aligned}
$$

or, equivalently,

$$
\int_{r \leq|\xi| \leq 2 r}|\widehat{f}(\xi)|^{2} d \xi=O\left(\frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}}\right) \text { as } r \longrightarrow+\infty
$$

Thus there exists then a positive constant C such that

$$
\int_{r \leq|\xi| \leq 2 r}|\widehat{f}(\xi)|^{2} d \xi \leq C \frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}}
$$

Hence

$$
\begin{aligned}
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi & =\left[\int_{r \leq|\xi| \leq 2 r}+\int_{2 r \leq|\xi| \leq 4 r}+\int_{4 r \leq|\xi| \leq 8 r}+\ldots\right]|\widehat{f}(\xi)|^{2} d \xi \\
& \leq C \frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}}+C \frac{(2 r)^{-2 \alpha}}{(\log 2 r)^{2 \gamma}}+C \frac{(4 r)^{-2 \alpha}}{(\log 4 r)^{2 \gamma}}+\ldots . \\
& \leq C \frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}}+C \frac{(2 r)^{-2 \alpha}}{(\log r)^{2 \gamma}}+C \frac{(4 r)^{-2 \alpha}}{(\log r)^{2 \gamma}}+\ldots . . \\
& \leq C \frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}}\left(1+2^{-2 \alpha}+\left(2^{-2 \alpha}\right)^{2}+\left(2^{-2 \alpha}\right)^{3}+\ldots .\right. \\
& \leq C K \frac{r^{-2 \alpha}}{(\log r)^{2 \gamma}},
\end{aligned}
$$

where $K=\left(1-2^{-2 \alpha}\right)^{-1}$.
This prove that

$$
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi=O\left(r^{-2 \alpha}(\log r)^{-2 \gamma}\right) \text { as } r \longrightarrow+\infty
$$

and this ends the proof.
Definition 2.2 A function $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ is said to be in the ψ-Dini Lipschitz class, denote by $\operatorname{Lip}(2, \psi)$, if

$$
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}=O\left(\frac{\psi(h)}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \gamma>0, \text { as } h \longrightarrow 0
$$

where

1. $\psi(t)$ is a continuous increasing function on $[0, \infty)$,
2. $\psi(0)=0$,
3. $\psi(t s)=\psi(t) \psi(s)$ for all $s, t \in[0, \infty)$,
4. $\int_{0}^{1 / h} x \frac{\psi\left(x^{-2}\right)}{(\log x)^{2 \gamma}} d x=O\left(\frac{1}{h^{2}} \frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)$.

Theorem 2.3 Let $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ and let ψ be a fixed function satisfying the conditions of Definition 2.2. Then the following statements are equivalent

1. $f \in \operatorname{Lip}(2, \psi)$,
2. $\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi=O\left(\psi\left(r^{-2}\right)(\log r)^{-2 \gamma}\right)$ as $r \longrightarrow+\infty$.

Proof. 1) $\Longrightarrow 2)$ Assume that $f \in \operatorname{Lip}(2, \psi)$. Then we have

$$
\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}=O\left(\frac{\psi(h)}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \text { as } h \longrightarrow 0
$$

If $|\xi| \in\left[\frac{1}{h}, \frac{2}{h}\right]$, then $h|\xi| \geq 1$, and similarly as in the proof of Theorem 2.1 we obtain

$$
\begin{aligned}
\int_{1 / h \leq|\xi| \leq 2 / h}|\widehat{f}(\xi)|^{2} d \xi & \leq \frac{1}{c^{2}}\left\|\mathrm{M}_{h} f(x)-f(x)\right\|_{2}^{2} \\
& =O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
\end{aligned}
$$

Thus there exists then a positive constant C_{1} such that

$$
\int_{r \leq|\xi| \leq 2 r}|\widehat{f}(\xi)|^{2} d \xi \leq C_{1} \frac{\psi\left(r^{-2}\right)}{(\log r)^{2 \gamma}}
$$

Hence

$$
\begin{aligned}
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi & =\left[\int_{r \leq|\xi| \leq 2 r}+\int_{2 r \leq|\xi| \leq 4 r}+\int_{4 r \leq|\xi| \leq 8 r}+\ldots .\right]|\widehat{f}(\xi)|^{2} d \xi \\
& \leq C_{1} \frac{\psi\left(r^{-2}\right)}{(\log r)^{2 \gamma}}+C_{1} \frac{\psi\left((2 r)^{-2}\right)}{(\log 2 r)^{2 \gamma}}+C_{1} \frac{\psi\left((4 r)^{-2}\right)}{(\log 4 r)^{2 \gamma}}+\ldots . \\
& \leq C_{1} \frac{\psi\left(r^{-2}\right)}{(\log r)^{2 \gamma}}+C_{1} \frac{\psi\left((2 r)^{-2}\right)}{(\log r)^{2 \gamma}}+C \frac{\psi\left((4 r)^{-2}\right)}{(\log r)^{2 \gamma}}+\ldots . \\
& \leq C_{1} \frac{\psi\left(r^{-2}\right)}{(\log r)^{2 \gamma}}\left(1+\psi\left(2^{-2}\right)+\left(\psi\left(2^{-2}\right)\right)^{2}+\left(\psi\left(2^{-2}\right)\right)^{3}+\ldots .\right. \\
& \leq C_{1} K_{1} \frac{\psi\left(r^{-2}\right)}{(\log r)^{2 \gamma}}
\end{aligned}
$$

where $K_{1}=\left(1-\psi\left(2^{-2}\right)\right)^{-1}$, since by (1) and (3) from Definition 2.2 it follows that $\psi\left(2^{-2}\right)<1$.

This proves that

$$
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi=O\left(\psi\left(r^{-2}\right)(\log r)^{-2 \gamma}\right) \text { as } r \longrightarrow+\infty
$$

$2) \Longrightarrow 1)$ Suppose now that

$$
\int_{|\xi| \geq r}|\widehat{f}(\xi)|^{2} d \xi=O\left(\psi\left(r^{-2}\right)(\log r)^{-2 \gamma}\right) \text { as } r \longrightarrow+\infty .
$$

By (3) it follows that we have to show that

$$
\int_{0}^{\infty} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x=O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right),
$$

where

$$
\varphi(x)=\int_{\mathbb{S}^{n-1}}|\widehat{f}(x y)|^{2} d y
$$

We write

$$
\int_{0}^{+\infty} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

where

$$
\mathrm{I}_{1}=\int_{0}^{1 / h} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x .
$$

and

$$
\mathrm{I}_{2}=\int_{1 / h}^{+\infty} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x .
$$

Firstly, from (1) of Lemma 1.1 we see that

$$
\begin{aligned}
\mathrm{I}_{2} & =\int_{1 / h}^{+\infty} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x \\
& \leq 4 \int_{1 / h}^{+\infty} x^{n-1} \varphi(x) d x \\
& =O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
\end{aligned}
$$

Set

$$
g(x)=\int_{x}^{\infty} s^{n-1} \varphi(s) d s
$$

From (2) of Lemma 1.2, an integration by parts yields

$$
\begin{aligned}
\mathrm{I}_{1} & =\int_{0}^{1 / h} x^{n-1}\left|1-j_{\frac{n-2}{2}}(h x)\right|^{2} \varphi(x) d x \\
& \leq-h^{2} \int_{0}^{1 / h} x^{2} g^{\prime}(x) d x \\
& \leq-g\left(\frac{1}{h}\right)+2 h^{2} \int_{0}^{1 / h} x g(x) d x \\
& \leq C_{2} h^{2} \int_{0}^{\infty} x \psi\left(x^{-2}\right)(\log x)^{-2 \gamma} d x \\
& \leq C_{2} \frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}},
\end{aligned}
$$

where C_{2} is a positive constant, and this ends the proof.

References

[1] E.S. Belkina and S.S. Platonov, Equivalence of K-Functionnals and Modulus of Smoothness Constructed by Generalized Dunkl Translations, Izv. Vyssh. Uchebn. Zaved. Mat., No. 8(2008), 3-15.
[2] W.O. Bray, M.A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis 255(2008), 2265-2285.
[3] M. Plancherel, Contribution a l'etude de la representation d'une fonction arbitraire par des integrales definies, Rend. Circolo Mat. di Palermo 30(1910), 289-335.
[4] E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.
[5] M.S. Younis Fourier transforms of Dini-Lipschitz Functions, Internat. J. Math. Math. Sci., 9(1986), No. 2, 301-312.

