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1 Introduction and preliminaries

The Fourier transform, as well as Fourier series, is widely used in various fields of
calculus, mathematical physics...

In [5], Younis proved an estimate for the Fourier transform in the space L*(R). In
this paper, we prove an analog and a generalization of this estimate in the space L?(R").

Assume that L?(R") is the Hilbert space of 2-power integrable function f : R® — C

with the norm
1/2
1l = ( / |f(:v)|2drc> .

Let f(z) € L*(R"). The Fourier transform f of f is defined by

1
(2m)"/2 Jn

(z)e " dx.

F(6) =
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The inverse formula of Fourier transform is defined by

_; ry piEm
@) = g [ Fleae

We have from [3] the Parseval’s equality

1712 = 111l (1)

Consider in L?(R") the spherical mean operator (see [2])

Mpf(z) =

f(z + hw)dw,

Wp—-1 Jsn-1

where S*~! is the unit sphere in R", w,,_; its total surface measure with respect to the
usual induced measure dw.

For o > —%, we introduce the normalized spherical Bessel function j, defined by

, = (—=1)(2/2)%
Jo(2) =Tla+1)) jEF(j)%f c{+) 1)’

Jj=0

z e C.

Lemma 1.1 For xz € R the following inequalities are fulfilled
1. |ja(2)] <1,
2. 1 =jalz)| < zl,

3. |1 —=ja(2)| > c with |xz| > 1, where ¢ > 0 is a certain constant which depends only
on a.

Proof. Similarly as the proof of Lemma 2.9 in [1] m

Lemma 1.2 Let f € L*(R"), then

— ~

L F)(E) = oz (IENFE).

Proof. The statement follows easily from representation of Fourier transform of radial
functions (see [4], Chapter IV). =
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2 Main Result

In this section we give the main result of this paper.
Theorem 2.1 Let f(z) belong to L2(R"), and let

ha
(log +)

||th(x)—f(x)l|2=0< ) o> 0,750

as h — 0. Then
/ [F(©)Pdg = O (r**(logr) ") as r — +o0.
13p22

Proof. We have

IMAf () — f(@)]2 = O ((IZ—)

If |¢| € [+, 2], then h|¢| > 1, and (3) of Lemma 1.1 implies that

>, as h — 0.

1 :
1< 1= Jua ()P,

Lemma 1.2 and Parseval’s equality (1) give

M f(z) = f(2)]; = /R 1= juz (RIEDIPF(E)Pde.

Hence, by (1) and Lemma 1.2, it follows that

N 1 N
[ iRere < 5 1~ a2 (WO DPLTE) P
1/h<€|<2/h ¢ J1/n<jg<2/n ’

1 "
3 [ 11 =Gz (MODPIF(©)PdE
R

IN

VAN

_ C_]-QHth(x)—f(w)H%
h2a
= ()

Tf2a

/r<|s<2r F©)Fds =0 ((bg 7")”) as T e

Thus there exists then a positive constant C' such that

or, equivalently,
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—2«

FONde < O——.
/,«s|s|gzr|f<£>‘ . (log )2
Hence
GRS [ [y +} Fle)pae
|§[>r r<|g]<L2r 2r<|¢|<4r 4r<|€|<8r
< T—Qa <2r>—2a (47,)—204
- (log )27 (log 2r)* (logdr)2r 777
< TfZa + (27,.)7201 (47“)72&
= (logr)* (logr)? (logr)> =
7"_20‘ — 2z — 20 — 2z
< (logr)27(1+2 2o (2722 (2723 L
T—2a
< CK
< CRggnm

where K = (1 — 272)~1,
This prove that
[ 1@ =0 (=0gr) ™) s r — oo
[€]>r

and this ends the proof. m

Definition 2.2 A function f € L*(R") is said to be in the -Dini Lipschitz class,
denote by Lip(2,1), if

M) = ) =0 (G ) 7> 0, as b,
where

1. (t) is a continuous increasing function on [0, 00),
2. 4(0) =0,
3. p(ts) = Y (t)(s) for all s,t € [0,00),
Lh | p(x—?) — 1 _y(h?)
4 Jo" ¥ ogaprdr = O (h2 <1og%>2w>'

Theorem 2.3 Let f € L2(R™) and let ¢ be a fized function satisfying the conditions
of Definition 2.2. Then the following statements are equivalent
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1. fe Lip(Q,;b),
2 fpor |FOPAE = OW(r2)(log 1)) as r — +oo.
Proof. 1) = 2) Assume that f € Lip(2,¢). Then we have

M) = )l = 0 (G

If |¢] € [+, 2], then hl¢] > 1, and similarly as in the proof of Theorem 2.1 we obtain

) as h — 0.

/ FOPdE < LIMuf(x) — F@)]2
1/h<[€|<2/h ¢

(i)

Thus there exists then a positive constant C such that

U(r—?)
(logr)®r

/ Foprd <
r<[g|<2r

Hence

fle)fd = G
/5|27’|f(€)| ‘ |:/TS|5|S2T+/2TS|§§4T+/4TS5|SST+ }|f(£)| ¢

P(r—?) P((2r)7?) P((4r)7?)
(logr)? +C (log 2r)% +C (log 4r)%

Vi) o @) | L))

Ch

Cl (10gr)27 1 (logr)% (10g7’)27 .....
<G &Zr% (14 9(272) + (G272 + (B2 + ...
P(r=?)
- ClKl(logr)%’

where K7 = (1 —(27%))7!, since by (1) and (3) from Definition 2.2 it follows that

P(27%) < 1.
This proves that

[ I ©Fde =0 (v togr) ) as r — o
g=r
2) = 1) Suppose now that
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/|£> |f(§)|2d§ = 0 (¥(r ) (logr) ) as r —s +o0.

By (3) it follows that we have to show that

/Ooox"_1|1—jn22(hx)|290(a:)dx:0(M)’

(log )%
where
o) = [ \Fla)Py.
Sn—l
We write
—+o0
/ x"_1|1 — janz(hx)F(p(x)dm =1, + 1y,
0
where
1/h
L = / "1 = juoz (ha)|Po(x)da.
0 2
and

+o0o
I — / 21 = jus (ha) 2 (2)de
1/h 2

Firstly, from (1) of Lemma 1.1 we see that

+o00
o= [ e ()Pt
1/h
+o0
< 4/ 2" lo(r)d
1/h

(o)

ote) = [ eloyis

From (2) of Lemma 1.2, an integration by parts yields

Set
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1/h
L= [ e g (he)Pp(e)da
0 2
1/h
—h2/ g (z)dx
0
1 1/h
—g(ﬁ)+2h2/ zg(x)dx
0

Cyh? /00 (" ?)(log ) dx

0
W (h?)
(log )

where C} is a positive constant, and this ends the proof. m
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