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Introduction

Let K be a perfect field and let K be a fixed algebraic closure of K. Let S be the K-vector space of
all sequences f : N — K with entries in K and let S = S ®x K be the K-vector space of all sequences
g : N — K with entries in K. Let T : S — S, T(f)(n) = f(n+ 1), n € N be the usual simple shift
operator on S. We also denote by T the extension of the simple shift operator to S. For any a1, as, ..., a,
k elements of K, the operator

L=TF4aT" "+ .. +al,

where I is the identity operator on S, is called a k-order linear shift operator on S. We denote by L its
canonical extension to S. A recurrent sequence f of S is an element in ker L for a linear shift operator L.
In Theorem 1.5 and Remark 1.10 we recall (see also [8]) the structure of ker L and of ker L as a vector
subspaces of S and of S respectively. In Propositions 1.7, 1.8, 1.9 we also recall (see also [8]) the structure
of all solutions of the inhomogenous equation L(f) = g, where f,g € S. For a fixed recurrent sequence
f € S, a minimal linear shift operator of f is a linear shift operator Ly with a minimal order kg such that
f € ker Ly. In Proposition 2.2 we prove that if L is any other linear shift operator with f € ker L, then L
is a multiple (relative to the extension by linearity of the multiplication T2 = T o T') of Lo and that this
minimal linear shift operator Ly is unique (see also [7]).

In Theorem 2.5 we prove that (with respect to the above multiplication ”0”) if L = Ly o Ly o...0 Ly
is a factorization of L into linear shift operators (over K) of orders greater or equal to 1, then ker L =
Z?Zl ker L; and this sum is a direct one.

In Theorem 2.7 we give the structure of ker L in language of the kernels of the irreducible factors of L
in the factorial ring K[T] (see also [7]).

In Section 3 we give a criterion to say when an element from ker L is an element in ker L (Theorem
3.1). As a consequence of this criterion we prove that the Hadamard product between two recurrent
sequences is again a recurrent sequences (Corollary 3.3). This result was proved in many other papers
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(see [1]). However, our methods used to study some arithmetical properties of the recurrent sequences
over different extensions of fields can be used for other purposes.
During the study which follows, we used some ideas of the following basic works: [1] and [3]-[10].

1. NOTATION, DEFINITIONS AND BASIC RESULTS

In this section we rewrite some basic facts from [8] in our context with slight modifications. Sometimes,
when the proofs of our results are relevant for what follows, we give them. Usually, for the proofs of the
known results we send the reader to [8] for instance.

Let K be a commutative field (finite or not) and let K be a fixed algebraic closure of it. Let S be
the set of all sequences {ay,}neny with entries a,, n € N, in K, i.e. the set of all functions f : N — K.
When we speak of f € S, where f : N — K, we mean that the sequence {f(n)},en € S. It is clear how
S, become (infinite dimensional) vector space over the field K. In fact all operations are componentwise
operations.

The linear operator T : S — S, T(f) = g, where g(n) = f(n + 1) is called the simple shift operator
of S. If we write {a,} we usually mean {a,}nen. We denote T* = ToTo..oT, so T*(f) = g, where

k—times
gn) = f(n+k) forn=0,1,....

It is easy to see that KerT* = {(z,)n : 2x = Tps1 = ... = 0}, i.e. dimg KerT* = k. Let now
a1, Gz, ...,a; be k fixed elements in K and let us denote by I : S — S the identity operator on S:
I(f) = f. The linear operator

(1.1) L=T'+a,T" '+ . +ap 1T +apl
defined on S is called a k-order linear shift operator on S. The equation
(1.2) L(f) =g
is called a k-order (linear) algebraic equation with shift operators. If g = 0, the equation (1.2) is said to
be homogeneous; otherwise it is called an inhomogeneous equation with shift operators.
Let us denote by Sol = ker L, the vector subspace of S consisting of all solutions f : N — K of the
equation L(f) = 0. If {z, }nen € Sol, then
(1.3) Tpgk = =1 Tpyk—1 — 02Tpqk—2 + oo + A 1Tp 1 + AT,

for any n = 0,1,... . Such a sequence is called a recurrent sequence over K and k is called a period of
{Zn}nen. Tt is clear that a recurrent sequence of period k is completely determined by the first k terms
ZQ, ..., Tx—1 of it. The problem is to find the general term z,, of such a sequence and the structure of all
of them. We remark that if a; # 0, there exists a unique recurrent sequence {x, }nen in S which satisfies
the relation
Tptk = —ATptk—1 — A2Tnyk—2 + ... T Ak—1Tp41 + AT

for any n € N and with xg, ..., zx_1 given in K.

We can assume that ay # 0, otherwise, denoting y, = xn+1, 7 = 0,1,..., we see that the recurrence
relation (1.3) becomes:

(1.4) Ynth—1 = =01 Yntk—2 = 02Yntk—3 + o+ Ah—1Yn,
i.e. the sequence {y, }nen belongs to the kernel of the shift operator
Ll = T‘ki1 —+ alT’“72 + ...+ ak_lf.

If ar,—1 = 0, we go on to diminish the period by substituting the sequence {y, }nen with {2z, }nen, where
Zn = Yn+1, etc. If all aq,...,a are zero, the initial sequence {z,}nen is a constant sequence, a trivial
case in our study. If kK = 3, a1 = 1 and ay = 0, then, in (1.4) z,43 = ZTn42 + T,ny1 and the sequence
Yn = Tpy1 is a Fibonacci type sequence ([6]). This means that the first three terms zg, 1, 9 are ”free”
and 3 = To + T1, T4 = T3 + Ta, etc., i.e. from the second rank on, the sequence is a Fibonacci sequence.
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The term xg is free of any recurrence relation, i.e. it is not involved in such a relation. This is an example
of a mized recurrence sequence, i.e. of a sequence of the form:

(1.5) (0,21, ey 1-1,0,0,...) + (0,0, ..., 0, Y1, Y41, - )s

where xg,x1,...,2;_1 are arbitrary elements in K and

(05 07 seey 07 Y, Yi+1, )
is a recurrent sequence of period, say k > [, which is in the kernel of a shift operator of the form:
M=(TF"+a,T" " 4 tap  I)oT', ap_; #0.

The sequence z, = yi4n, n = 0,1, ..., is a recurrent sequence which is in the kernel of the shift operator
TFt 4 ;T =1 ...+ ai_;I. This is why the study of the kernel of a shift operator can be reduced to
the case when ay, # 0.

We associate with the equation L(f) = 0 a polynomial equation in a variable r :

(1.6) P(r)=rF+ar* 4. +ap_1r+ap =0,

where P(r) € K|[r] is a polynomial of degree k with coefficients in the initial field K and ay # 0,i.e. 7 =0
is not a root for P(r). This polynomial is called the characteristic polynomial of the operator L. The
polynomial equation P(r) = 0 is called the characteristic equation of L. If r1 # 0 is a solution (in K) of

(1]

the characteristic equation, then the sequence (in fact, a geometrical progression of ratio ) {xn } ,
neN

where mg] = r7, is a solution of the shift operator equation L(f) = 0. If the characteristic polynomial

is irreducible over K, then all its solutions are not zero, except the trivial case P(r) = r, which is not
considered here.

Proposition 1.1. (see also [8], 2.3) With the above notation and definitions, if r1,r2,...,7¢ are distinct

roots (in K ) of the characteristic equation P(r) = 0, then their corresponding sequences {x%]} ,
neN

j =1,2,....t, defined above, are linear independent elements in S, over K. Here S = S @k K, i.e. the

K -vector space of all sequences {%n},en, where z, € K for alln € N,

Lemma 1.2. (see also [8], 2.3) Let Py(x), ..., P(x) € K[z] be l > 2 nonzero polynomials with coefficients

in K and let sq,...,s;, | > 2, be | distinct elements in K. Let {xw = s?} . j=1,....1 be the corre-
ne

sponding geometrical progression sequences defined by s1, ..., s;. Then the sequences {yy] = P; (n)x%]} N’
o o ne

j=1,...,1 are linear independent elements in the vector space S = S Qi K.

Proposition 1.3. (see also [8], 2.3) Let r1 # 0 (for instance if P(r) is irreducible) be a root of algebraic

multiplicity my > 1 of the characteristic polynomial P(r) from (1.6) and let Py(z) € K|x] be a polynomial

of degree < my. Then the sequence {x,, = Pi(n)r{'}, cy is in ker L and the sequences 2 = njr{b} ,

7 =0,1,...,m1 — 1 are linear independent elements in ker L. "

Let
Piry=(r—r)"™(r—ry)". . (r—r)™
be the factorization of the characteristic polynomial P(r) (see (1.6)) into linear factors, where r1,...,7
are the distinct roots of P(r) =0 in K and mj + ... + m; = k is the degree of P(r).

Let B; = {(rf)n, (nr?)ny ooy (nmi*lr?)n} ,i=1,2,...,0 bel subsets of elements in ker L (see Proposition
1.3).

Proposition 1.4. (see also [8]) With the above notation and notions, the set B = B U By U...UB; of
elements in ker L is linear independent over K.
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Theorem 1.5. (see also [8]) The set B =By UByU...UDB; is a basis for the vector subspace ker L. In
particular, dimker L = k, the degree of the characteristic polynomial P(r). Moreover, any element {x,},
of ker L is a linear combination of the form:

(1.7) {zn}n = {A[[)n]}n o + {A[l"}}n x1+ .+ {Agﬂl}n Th_1,

where {Agﬂ} , {A[lnl} s e {Agcn_]l} is a canonical basis (over K ) in ker L which corresponds to the

particular values

(1,0,0,...,0),(0,1,0,...,0),...,(0,0,0,...,0,1)
respectively, given to (xo,x1,Ta,...,Tk—1). In particular, the sequence {x,}, is obviously completely de-
termined by the first k values xg, 1, X2, ...,Tx_1 of il.

Proof. Since B is linear independent (see Proposition 1.4) and since it has k elements, it is sufficient to
prove that dimker L > k. We shall construct k& generators in ker L and the statement of the theorem will
be completely proved at that moment. For this, let {z,}, be a sequence in ker L. Thus,

(1.8) Tpik = —01Tnpkh—1 — A2Tptpk—2 — - — Ag—1Tpp1 — kTn

for any n =0,1,... (see (1.1)). For n =0, we get

(1.9) Tk = —Q1Tk_1 — A2Tj_9 — ... — Ak_1T1 — ARTQ.
Let us denote: Agﬂl = —aq, AL@Q = —aso, .., A([)k] = —ag. Thus, (1.9) can be rewritten as:
(1.10) Ty = Agc]xo + A[lk]xl + ...+ Aglea:k_g + Agckllxk_l.
For n =1 in (1.8) we get:
Te41 = —A1TE — A2T[—1 — «.. — Ap—1T2 — ALT1 =
= —a1(—a1ZTp—1 — A2Tp—2 — ... — Ap_1T] — ARTo)—
—A2T_1 — ... — Af_1T2 — ART] =

ZA([)k+1]$O+A[1k+1]$1-‘r.--+Agckzl]wkfz-f-Aijll]xkfl,

where Agcﬂ] = a0k, A[lkH] = a10k—1 — Ak, A[zkH] = A10k—2 — Qf—1, -+ Agckal] = aja2 — as, Agﬁl] =
a? — ay. Assume that we just constructed Ag], A[f], ...,Aggl_l, j=k1,...k+n—1. Let us construct
Al plknd AR Gince
Th4n—1 = Agk+n71]$o + A[1k+n71]$1 + ...+ Agﬂkjgnil]xk—Q + Akaf*”xk_h
where Agﬂ_n_l], A[lk'm_l], ey Agfjln_l] are polynomials in aq, as, ..., ar, and since
LTk4n = —A1TE4n—1 — A2Tk4n—2 — «.. — Ok—1Tn4+1 — ATy =
. {A([)Hn—uxo n A[{Hn—l}gg1 ot Agﬂkjgn*l]xkfz + Aijlnfl]xkq} _
—ay {A([)k-i-n—Q]xO + A[1k+n—2]x1 N AL’“fZ”‘Z}xkfg T AL’“fl"‘Q}xkfl} _
—e. — Qf—1 |:A£)n+1]$0 + A[1n+1]I1 + ...+ ALn_—gl]l‘k_Q + ALH_-i-ll]xk_l] —
—ag [A([)n]xo + A[ln].ljl + ..+ AEQ"Eka_g + Aﬁﬁkﬂ} =
= A[Ok+n]$0 + A[1k+n]l‘1 + ...+ Agfkan]xk_Q + Aijln]Ik_l,
where
(1.11) Al = g Al g a2l g A 01 k-
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We see from this last formula that the sequences {A,[gn]} N where Agj] =0,5j=0,1,....k — 1, except

ne
j = t, when Agt] = 1, belong to ker L and they make up a generator system for ker L over K. Since
dimker L > k, we obtain that dimker L = k. From

(1.12) Thin = AT gg + APy 4 A AR

we also see that {A([)n]} s e {Aﬁl} is a canonical basis of ker L. It is obtained by making zq = 1,
21 =0,..,25-1=0;20=0,21 =1, 20 =0,...,x5,—1 = 0, etc. in (1.12). In fact, we do not need to prove
that {Agl]} s e {AEC"_]I} are elements in ker L. It is sufficient to see that ker L is a subspace in the
vector subspace (of S;) generated by {AE)"]} s {AE:L_]I} . Since the dimension of ker L is at least k

and from this last remark it is at most k, we easily derive that dim ker L = k. (I

Remark 1.6. If we look at the recurrent sequence {x, },en € ker L as a sequence in S = S®p K, it can
be uniquely described as a sum of the form: {z,}nen = Zé:l {P;(n)ri'}, _,, where ri,...,r; are all the
distinct roots of the characteristic polynomial P(r) of the shift operator L = T*+a T* ' +...4+ap_1T+axl
and P;(r) € K[r] are polynomials of degree at most m; — 1, m; being the algebraic multiplicity of the
root r;, 1 = 1,2,...,1. If we look at the recurrent sequence {x, },en € ker L as a sequence in S, i.e. with

entries in K, it can be uniquely described as a sum of the form: {z,}nen = {A([)”]} To + {A[l"]} r1 +

ot {AL’L}
ker L with entries in K itself. The problem is that we cannot easily describe the general term of each of

these sequences {Ag"]} , 7 =0,1,...,1. For instance, for the Fibonacci sequence
n

xp_1 (see 1.7) where, this time, {Agl]} s s {Agﬂl} is a basis of recurrent sequences in
n

(1.13) {zo, 21,21 + T0, e, T = Tp—1 + Tp_2, ...},

xg,x1 € K, the periodic sequences {A([]n ]} , {A[ln]} are also Fibonacci sequences obtained from the
n

general formula (1.13) by making xo = 1, 1 = 0 and g = 0, 1 = 1, respectively. Thus,

{Ag"]}n = {1,0,1,1,2,3,5,8, ...},

{A[{L]}n =1{0,1,1,2,3,5,8,...}.

In the next section we shall see how to construct new other bases for ker L, starting from its basis over K,
more exactly over K[ry,...,r;], the subfield of K generated by all roots of the characteristic polynomial
P(r).

A Cauchy problem for the linear algebraic shift operator homogeneous equation L(f) = 0 (here L is
a fixed proper (a; # 0) linear shift operator) is that of finding a solution f € S of it, if we know the
initial” k values of f: f(0) = yo,..., f(k — 1) = yp_1.

Proposition 1.7. The above Cauchy problem for the equation L(f) = 0 with the initial conditions
f(0) =yo,..., f(k—1) = yr—1 has a unique solution over K, i.e. in S, namely

f(n) = A([)n]yo + A[ln]yl + ...+ Agi]lyk—la n = 0, 1, ceey

where {A([)n]} s e {AL"_]l} is the canonical basis constructed during the proof of Theorem 1.5 and during

the dz‘scussz‘oﬁl in Remark 1.6.

Proof. The proof is obvious in view of the proof of Theorem 1.5. O
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Proposition 1.8. The inhomogeneous equation L(f) = g, with f unknown in S, g known in S and with
the initial conditions

f(O) = yE)ka ceey f(k - 1) = ?/72717

has a unique solution in S.

Proof. Let g = {yn}nen be a given sequence in S, i.e. with entries in K. We define f = {z,, }nen in the
following way:

(1.14) TO = Yoo oo Tho1 = Ypo1,
But L(f) = g is equivalent to
Tptk + 01 Tptk—1 T 2Tptk—2 + ... + A—1Tp+1 + ATy = Yn,
for any n =0,1,... . So
Ttk = Yn — A1Tptk—1 — A2Tn+k—2 — .- — Qk—1Tn41 — AkTn,
for any n =0,1,... . The solution is obviously unique. (I

A particular solution for the above equation L(f) = g is obtained by taking y5 = 0,...,y;_; = 0 in
(1.14). Tt is of the form:

(1-15) fp = {fELf]}neN =1¢0,0,...,0,90, 91 — a1y0,y2 — a1y1 + a%yo — a2Yo, --- ¢
N—_——

k—times

We can use this last particular solution f, to find the structure of all solutions of the equation L(f) = g.

Proposition 1.9. Let {A[n]} e ,{A[n] } be the canonical basis of ker L constructed during the proof

of Theorem 1.5 and let f, be a particular solutzon of the inhomogeneous equation L(f) = g. Then any

solution of this last equation in S, i.e. over K, is of the form:

(1.16) r=f+c{al’} vo{a} v {af}
where Cy, ...,Cr_1 are arbitrary elements in K. Moreover, with the notation _and definitions used in
Remark 1.6, any solution of the equation L(f) = g, where g is a sequence over K (or over K|ry,...,1]),

18 of the form:

l
(1.17) f=tf+ > AP}

i=1
where P;(z) € K (or K[r1,...,m1]) is an arbitrary polynomial of degree m; — 1, if m; is the algebraic
multiplicity of the root r; of the characteristic polynomial P(r), for any i =1,2,...,1.

Proof. Let f1 be a solution of L(f) = g. Then L(f1) = g and L(f,) = g. Subtracting the last equality
from the first one, we get: L(f1—f) =0,i.e. fi—f € ker L, so it is of the form Cj {AE"]} +C4 {A[ln]} +

n

o+ Croa {A@l}n or, if we work over K, of the form 22:1 {P;(n)rl'} etc. O

nen’

Remark 1.10. All the above theory can be extended from sequences of S to sequences f € S , i.e. to
complete sequences f : Z — K. Let L be a shift operator as in formula (1.1). Then f = {z,, }nez belongs
to ker L if and only if

Tntk = =01 Tptk—1 — 02Tntk—2 — - — Qk—1Tn41 — OkTp, Gk 7 0,
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for any n € Z. This recurrence relation completely defines the whole sequence {x,,},cz if we have the
" positive part” fi = {x, }nen of it. Indeed,

Tr_1 = T an [Tr—1 +a1Tp_2 + agxp_3 — ... — ap_17o),
k

T_og = T [xk_g +a1Tp—3 + a2xp—g — ... — ak—lx—l] )
k

and so on. This is why ker L for L : S — S has the same bases as those constructed in Theorem 1.5,
dimker L = k, etc. The only extension is made relative to n, which have to run all over Z this time. For
instance, if K = Q and L = T? — 5T + 61 = (T — 2I) o (T — 31I), ker L = {C12" + C33"} ¢z and its basis
is the set of the two infinite geometrical progression:

1 11

oy oy =y =5 1,2,2223
) 23 ) 22 b 2’ ) ) ) )

of ratio 2, and

1 1

33 38 ,1,3,32.3% ..

Wl =

of ratio 3.

2. RECURRENT SEQUENCES AND ALGEBRAIC FIELD EXTENSIONS

We assume that our field K is a perfect field, i.e. any algebraic extension of it is separable (see [2]).
This is equivalent to say that for any o € K, the polynomial f,(z) € K[z] of minimal degree such that
« is a root of it has only simple roots, i.e. f/(a) # 0 ([2]).

Definition 2.1. We say that a sequence f : Z — K, defined on the whole Z with values in the field K,
is a recurrent sequence of a period k if there exists a linear shift operator

L=T'+a,T" '+ dap 1 THapl,a; € K,j=1,2,.. ka #0,

(see also 1.1) with f € ker L. If f(n) = z,, n € Z, i.e. if f = {xzy}nez, f is a recurrent sequence if and
only if

(2.1) Tpak = —Q1Tp k-1 — A23Tn k2 — oo — Qfg_1Tpi1 — ATy, ap 70, n € Z.

If Lo has the least possible order with f € ker Lo and if kg is this order, we call this ko the degree (or the
period) of f and Ly is called the minimal (shift) operator of f (see bellow the uniqueness of Ly).

The mapping
(2.2) L=TF+a;TF '+ ... +ap 1T+ arl — P(r)= " arF T L ap g +ag € K|r]

defines a ring isomorphism between the commutative ring of all linear shift operators (with composition
70" for multiplication) and the polynomial ring K|r| in the variable r. Here by the composition between
two linear shift operators L = T* + a;T* ' + ...+ ap] and M = T' + 0,7 ! + ... + b;] we mean
a "polynomial multiplication” in K[T], i.e. T% o T’ = T etc. We say that L is irreducible if its
characteristic polynomial is irreducible in K[r]. Thus L is irreducible if and only if L cannot be written
as L = Ly o Ly, where the orders ki, ko of L and Lo respectively are greater then zero. For instance, if
K = Q, the rational number field, then L = T? — 21 is irreducible (over Q) but it is not irreducible over
K =Q[V2]: L= (T —+/2I)o (T + +2I) over Q[v/2]. Here T : S — S is the usual simple shift operator:
T(f) = g, where g(n) = f(n + 1). We also remark that T is invertible: T1(f)(n) = f(n — 1). It is not
invertible if we restrict it to S.

If L = Lo Ly, we say that Ly and Lo are factors of L or that L is divisible by L; and L. We also
say that L is a multiple of Lq or of Ls.
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Proposition 2.2. Let {x,}nez be a recurrent sequence of S (over K) and let Ly be a minimal shift
operator of {xn}nez. Then any other linear shift operator L such that {x,}nez € ker L is a multiple of
Lo, i.e. L =Lgo Ly. In particular Ly is unique with the property that it is minimal for {xy }nez.

Proof. Let Py(r), P(r) be the characteristic polynomials of Ly and L respectively. The division algorithm
of Euclid says that there exist two monic polynomials Q(r) and R(r) with

(2.3) P(r) = Py(r)Q(r) + aR(r)

deg R(r) < deg Py(r) and a € K. Because of the above ring isomorphism, the formula (2.3) can be
rewritten in language of shift operators:

(2.4) L=1LyoL,+aLy,

where L; and Ly are the unique shift operators which have as characteristic polynomials Q(r) and R(r)
respectively. Since {zy, }nez € ker L Nker Lo, from (2.4) we get that {z,}nez € ker Ly if a # 0. Since Lo
has the least order possible such that {x, }necz € ker Ly and since the order of Ly is less than the order
of Ly, we see that Ly = 0 and so, L = Lgo Ly. If a = 0, we get the same result. If Ly, My were two
minimal shift operators for {2, }nez, we get Lo = My o Q. Since Ly and My have the same order kg, the
order of Q) is equal to zero, i.e. Qo(f) =bf, where b € K. But the characteristic polynomials of Ly and
My are monic polynomials, thus b = 1 and so Q¢ = I, the identity operator. Hence Ly = Mj. (I

Remark 2.3. The minimal shift operator of a recurrent sequence {x,, }ncz is not always irreducible. For
instance, the minimal shift operator L of the recurrent sequence f = (...1,0,1,0,1,...1,0,1,...) (over Q),
o =1, 21 = 0, etc., is T2 — I. But this one is not irreducible: T2 — I = (T'— I) o (T'+ I) and, as it is
obvious, f ¢ ker(T — I) and f ¢ ker(T + I).

Remark 2.4. The set S of all sequences f : Z — K is a commutative group relative to the usual addition
of functions: (f + g)(n) = f(n) + g(n). The subset A of all recurrent sequences f of S is an additive
subgroup of S. Indeed, if Ly = TF 4+ a TF1 + .+ apl, L, = T+ 0,7 + . 4 b, ag, by # 0, are the
minimal shift operators of f and g respectively, then for L = Ly o Ly, = Ly o Ly we obviously have that
f + g € ker L. We shall also see in the next section that the Hadamard product (fg) (n) = f(n)g(n) of
two recurrent sequences f and g of S is again a recurrent sequence in S (see also [1] for some other cases).

Theorem 2.5. Let L be a linear shift operator defined on S and let
L=LioLyo..0oLy

be a factorization of L into linear shift operators (over K ) of orders greater or equal to 1. Then ker L =
h ; , ,
Y i ker L; and this sum is a direct sum.

Proof. Since the composition between linear shift operators is commutative we see that ker L D
Z?Zl ker L;. Let k be the order of L and k;, i = 1,2, ..., h be the order of L;. The isomorphism (2.2) says
that k = Z?:1 k; and Theorem 1.5 says that dimg L; = k;, ¢ = 1,2, ..., h. Thus ker L = 2?21 ker L; and
the sum is direct. O

Let L be a k-order linear shift operator, k¥ > 0 and let P(r) € K|[r] be its corresponding characteristic
polynomial. Let P(r) = P{"*(r) - ... - P,""(r) be the factorization of P(r) into distinct monic irreducible
polynomial Py(r), ..., Py(r) over K. The isomorphism (2.2) says that L has the following unique factor-
ization:

(2.5) L=L{""oLy%o..0L",

where L; is an irreducible linear shift operator over K for any i = 1,2, ..., h. Theorem 2.5 says that it is
sufficient to construct a ”special” basis in ker L7, i = 1,2, ..., h. The following lemma will reduce such a
construction to the case of m; = 1, i.e. to the case of an irreducible linear shift operator.
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Lemma 2.6. Let L be a linear shift operator of order at least 1 and let f = {x,}nez be an element
in ker L. Then the sequence {nx, }nez is an element of ker L2, i.e. L({nzn},cz) € ker L. In general, if
9 = {yn}nez € ker L™, then {ng(n)}nez € ker L™ for any m = 1,2, ... .

Proof. Let r1,...,7 be the distinct roots (in K) of the characteristic polynomial P(r) of L and let
mai,ma,...,my be the algebraic multiplicities of rq,7s, ..., respectively. Then rq,...,7; are all the dis-
tinct roots of the characteristic polynomial P?(r) of L? with their algebraic multiplicities 2my, ..., 2m;
respectively. From Theorem 1.5 we see that f is a linear combination over K with elements of the
form {nir?},, j = 1,2,...,m; — 1, i = 1,2,....1. Thus {nz,}, is a linear combination of {ni*1rn},
i=12..m;—1i=1,2..,0 Since 1 <j <m;—1, weseethat 2 < j+1<m; <2m; —1, so
{nj"’lr?}n € ker L? and finally {nz,}, € ker L. Let us assume now that g € ker L™ is a linear combi-
nation over K of {nir?},, j=1,2,...mm; — 1,43 =1,2,...,1. Thus, {ng(n)}, is a linear combination of
{nd*ter}, i =1,2,..,mm; —1,i=1,2,..,1. Since

2<j+1<mm; <(m+1)m; —1

we see that {n/ T}, € ker LT ie. {ng(n)}, € ker L™+, O

Let S be the set of all sequences f = {x, }nez WiLh values in a perfect field K and let § = §®K K be
the set of all sequences g = {yn }nez with values in K. Let L = TE 4+ a T+ . +ap_1T +arl, ax £ 0,
be an irreducible linear shift operator over K, defined on S, and let m be a natural number greater than
zero. We can also view L over K, i.e. we can also view it as a linear shift operator L defined on S. Tt is
obvious that L is irreducible if and only if L has order 1. Thus, the tower of K-vector subspaces:

(2.6) ker L C ker L C ker L? C ... C ker L™
can be viewed by tensorization with K over K as a new tower of K-vector subspaces:

(2.7) keﬁf C kerHZ2 C ker”f3 c..C kerufm.

ker L@ K ker L2Q K ker L3@, K ker L™ @, K

Let P(r) be the characteristic polynomial of L and let ry,7s,...,7; be all the roots of it (in K). Since
K is a perfect field, and since P(r) is irreducible, 71,72, ...,7; are distinct. Let F' = Klry,ro,...,7] be
the least subfield of K which contains all the roots of P(r). The extension of fields F//K is a normal
extension, i.e. if y € F, all the other roots of the minimal (irreducible) polynomial P,(r) € K[r] of y
are also in F. This means that F/K is a Galois extension, i.e. for any o € F' and for any K-embedding
o of Fin K, o(a) € F (see [2]). Theorem 1.5 says that recurrent sequences (infinite geometrical
progressions) {r7'}nez, ..., {r" }nez is a basis of ker L over K. Lemma 2.6 and this last mentioned theorem

say that {nr},ez, ..., {nr] Inez is a basis of kerfz/ ker L, ..., {n™ 'ri} ez, .., (™11l ez is a basis of

ker L™ / ker L™ . This is equivalent to saying that the set of sequences

(2.8) {riYnezy o {rl ez, {nrl tnez, o {00 tnezy -

(2.9) o AT ez, o (T Y e

is a basis of ker L. Since dimg ker L = dimy ker L = I, first of all we are to search for a basis of ker L
over K with [ elements.

For this, since F'/K is separable, let z be a primitive element of F//K, i.e. an element z € F such that
F = K[z] (see [2]). We know that {1, z,22,...,2/71} is a basis of the vector space F' over the field K (see
[2]). Let G = Gal(F/K) be the Galois group of F/K and let 01 = identity, o, ..., 0y be all the elements
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of G. We can assume that ro = o2(r1),...,7 = 0y(r1). So, for any fixed n € Z we can write:

rp =M ol 4o
rp =M 4 Moy (2) + .+ CMoy(2)

(2.10) ) :
= C}"} + C’én]al(z) +..+ C’l[n]m(z)l_1
where Cj["], j = 1,2,..,1 are elements in K. We can view (2.10) as a linear system in the un-
knowns C;"],Cén],...,q["]. Since its determinant is a Vandermonde determinant with value A =
[licicj<iloj(2) —0j(2)] # 0, because z = 01(2),02(z),...,01(2) are all the (distinct) roots of the
minimal polynomial of z. Since
A[n] A[”]
cl = - ol = -
where
j—th col
1 z 7 22 21
1 o9(2) ry oo(2)72 oo(z)t 1
(2.11) A;n]: : : : : : : : =
1 o1-1(2) (i o1-1(2)' 7 o (2)' !
1 o2) e o(2)- o(z)t

=djrl + djory + ... +dyr],
where dj; € F for any j,s = 1,2,...,1. Thus {C’][-n]}nez € ker L for any j = 1,2,...,1. Since A # 0 and
since {r}nez, .., {r" }nez is a basis in ker L we see that {C{n]}nez ) {Cén]}nez oo {Cl[n]}nez is also a
basis in ker L. In particular they are linear independent over K. Since dimker L = [, they are also a basis

in ker L.
Multiplying by n?, t = 1,2, ..., m—1 the j-th column in (2.11) and using that fact that the set of (2.8) is a

basis of ker L, we see that the set {nCén} } g {nCl[n} } . is a basis of ker L? /ker L, ..., {nm_lC{n] }
ne ne
nm-1 {Cz["]} 2’ eyl {Cl["]} . is a basis of ker L™ /ker L™~1 (over K). Hence
ne ne

{C{n]}nez’{Cén]}nez’“" {Cl[n]}nez,{ncén]}nez,...,{nC’l["]}nez,

(2.12) {nmflcv{”]}nez,nmfl {an]}nez,...,nmfl {q{n]}nez

is a basis of ker L™ over K.
Now we are ready to find a basis in ker L for an arbitrary k-order linear shift operator L defined on a
perfect field K.

Theorem 2.7. Let L = T* + a1T* ' + ... + ap_1T + axl, ax # 0 be an arbitrary k-order linear
shift operator over a perfect field K and let P(r) be the characteristic polynomial of L. Let P(r) =
Py (r)™ Py(r)™2...Ps(r)™= be the factorization of P(r) into products of irreducible factors (over K ). Let
t1,..., ts be the degrees of the irreducible polynomials Py, Py, ..., Ps respectively. Let L = LT oLy o...0 L™=
be the corresponding factorization of the operator L into products of irreducible operators. Let B; be the
basis (over K ), of the form (2.12) for ker L;”. Then B = U;_,B; is a basis of ker L over K.
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Proof. From Theorem 2.5 we know that ker L = Zj:1 ker L?” and this sum is a direct sum. Hence
B = U;_B; is a basis of ker L, where

B; = {C][’f] }nEZ : {CJ[.’;] }nez o {Cj[?] }HEZ , {nc}’;] }nez - {nc][’;] }nez

m—1 [n] m—l{ [n]} m—l{ [n]}
,{n le }nez’n C'j2 HEZ,...,n Cgtj e

is the corresponding basis of ker L™ constructed as above (see (2.12)). O

Example 2.8. Let L = T% 4+ 7T* + 1672 + 121 be a linear shift operator defined on the vector space
of all two-sided sequences of rational numbers. Its characteristic polynomial is P(r) = (r? + 2)2(r? + 3),
this factorization being a factorization into irreducible factors over Q, the field of rational numbers. Let
Ly = T? + 21 and Ly = T? + 31 be the corresponding irreducible shift operators which appear in the
factorization of I = L? o Ly. First of all let us find a K-basis in ker L?. For this, we see that F} = Q[iv/2]
is the decomposition field of 72 4+ 2 = 0. So, r; = i1/2 and ry = —i/2. Since

= C 4 Oy ive,

where
4, if n =4k 0, if n =4k
[n] _ 0, ifn=4k+1 [n] _ 1, ifn=4k+1
(2.13) Cir = -2, ifn=4k+2 Cia = 0, ifn=4k+2 ~’
0, ifn=4k+3 -2, if n=4k+3

the basis of ker L? over Q is:

s = et {2, i), (et} ]
Now, let find a basis in ker Ly. For this, we see that Fy = Q[i1/3] is the decomposition field of 72 +3 = 0.
So, s1 = iv3 and s = —iv/3 are its roots. Since

= of + OV
where
9, if n =4k 0, if n =4k

0, ifn=4k+1 ol — 1, ifn=4k+1
=3, ifn=4k+2 712 7 0, ifn=4k+2 ~’
0, ifn=4k+3 -3, ifn=4k+3

s [(es1), fex),)
Hence, the basis of ker L over K is:
5= |{cit}, {ci}, {ncii}, {nci}, {cil], {c5} ]

3. HADAMARD PRODUCTS OF RECURRENT SEQUENCES OVER A PERFECT FIELD
Let K be a perfect field and let K a fixed algebraic closure of it. Let G = Gal(K/K) be the absolute
Galois group of K| i.e. the group of all K-automorphisms o of K. Let S be the K-vector space of all two-
sided infinite sequences f : Z — K and let S = S @k K be the K-vector space of all two-sided infinite

sequences g : Z —» K. Thus, S C S. The main problem of this section is to decide when a recurrent

(2.14) cll =

the basis of ker Ly over Q is:

sequence g of S is an element of S. As usual, Ly denotes the minimal linear shift operator of f € S and

ff denotes the extension of Ly to § We know from Theorem 1.5 that if M is a linear shift operator on
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S and if Py(r) = (r —r)™ (r — ry)™2...(r — ;)™ € K][r] is the factorization into prime factors of its
characteristic polynomial, then ker M consists of all the recurrent sequences g : Z — K of the form

l
(3.1) o) = 3" Pt

where P;(r) € K|r] is a polynomial of degree at most m; — 1 for any i = 1,2,...,l. We can fix it by
giving the first m = mq + ... + m; = deg Py(r) values ¢(0),...,g(m — 1) of g. Now, if f:Z — K is
a recurrent sequence of S, and if f € ker L, where L is a linear shift operator on S, then f is also an

element of ker L, L being the natural extension of L to S. Let Pp(r) = QY (1Q%(r)..Qk (r) € K[r] be the
factorization of the characteristic polynomial Pp(r) of L into irreducible monic distinct factors @;. Then
Qi(r),i=1,2,...,t are coprime factors of Pr(r). Let Q;(r) = (r —ri1)(r — ri2)...(r — r4s,), $; = deg Q; be
the factorization in K of the irreducible (over K) polynomial Q;. Thus

(3.2) Poir) = T[T - )"

i=1j=1

Since {r;;} is a set of k = deg Pp,(r) distinct elements in K,

(33) Fn) =323 Py,

i=1 j=1
where P;;(r) € K|[r] are polynomials of degrees at most [; — 1 for all j = 1,2,...,s;. For any ¢ € G =
Gal(K /K) we define the known action of o on a polynomial H(r) = hor¢+hir? 1 +...4+h,_17+h, € K[r] :
o(H)(r) = a(ho)r® + o(h))r? ' + ...+ a(hg_1)r + a(hy) € K[r].
Since Q;(r) is irreducible over K, then o(Q;)(r) = Qi(r), i = 1,2,...,t (see [2]). Moreover, if Q;(r) =
(r—ri)(r —ri2)...(r — 1y, ), then

o(Qi)(r) = (r—o(ra))(r — o(ri2))...(r — o(ris,)) =
(3.4) =(r—ria)(r —ri2)...(r —1is;,) = Qi(r).

Since for any i = 1,2, ..., ,

(3.5) o ZPij(n)rfj =ZPij(n)rZ»,
j=1 j=1

from (3.3) we see that o(f(n)) = f(n) for any o € G, what is known from the definition of G. Let
us remark that the set of elements {Pij(n)r?j}j: Lo L are all conjugates one to each other for any
i=1,2,...1. B

We say that g € Sisa K-regular recurrent sequence if g(n) = 2221 Pi(n)r?
distinct and deg P;(r) = n;, and if we can write the set {rq,...,7;} as a union

{7‘1, ...,’/‘l} = U’;:l(’)(ri)

of orbits relative to G relative to some r; € {ri,...,r;} such that for any r, = o(r;) € O(r;) the corre-
sponding P, (r) = o(P;(r)); in particular the P,(r) have the same degree for all r, € O(r;), i = 1,2, ..., t.

In fact we just proved the following criterion.

(see (3.1)), where r; are

Theorem 3.1. Let g : Z — K be a recurrent sequence in S with the minimal linear shift operator Ly and
ker L, = {(yn)n7 Yn = Zl¢=1 R(n)rf} , where r1, ..., are the distinct roots of characteristic polynomial

P, of Ly with the algebraic multiplicities my,...,my respectively. Then g is in S if and only if g is
K-regular.
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Example 3.2. The sequence

f(n)(3n\f2)<1+\/§> +(3n+\f2)<1_‘/§> €7,

5 5

considered over Q[v/2] is in fact a sequence over Q. Indeed, if ¢ € Gal(Q/Q), then o(f(n)) = f(n), so
f(n) € Q. We see that f is a Q-regular sequence with the above definition. In fact f(n) is the sum of

elements of the orbit of (3n — 1/2) (HT\@)TL .

Corollary 3.3. (see also [1]) Let f and g be two recurrent sequences of g, i.e. with entries in K and
let h = fg, h(n) = f(n)g(n) be the Hadamard product of f and g. Then h is a recurrent sequence with a
period at most km, where k is the period of f and m is the period of g.

Proof. From the above discussion, let Ps(r) = Q% (r)Q%(r)...Q% (r) € K[r] be the factorization into

irreducible polynomials in K[r] of the characteristic polynomial Py (r) of the minimal shift operator L
of f. Let Qi(r) = (r —ri1)(r — ria)...(r — ris,), 8; = deg Q;, be the factorization of Q; in K, i =1,2,...,t.
Let P,(r) = RY*(r)Ry2(r)...RY»(r) € K[r] be the factorization into irreducible polynomials in K{r| of
the characteristic polynomial Py(r) of the minimal shift operator Ly of g (deg Py(r) — m). Let R;(r) =
(r —qi1)(r — qi2)--.(r — Giw, ), w; = deg R;, be the factorization of R; in K, i = 1,2, ...,v. Thus,

) = Fn) =305 Py,
i=1 j=1

as in (3.3) and

v ow;
g(n) =Y > Sij(n)af,
i=1 j=1
where deg S;;(r) is at most u; — 1 for any ¢ = 1,2, ..., v. Since a linear combination of recurrent sequences
over K is also a recurrent sequence over K (see Remark 2.4), it remains to see that the sum of the
elements of an orbit of an element P;;(n)Say(n)77;qy;, in the expression of f(n)g(n) is invariant relative
to any o € G = Gal(K/K), i.e. we prove that fg is K-regular. But this is obvious because f and g are
K-regular. Thus fg is again a recurrent sequence over K. Counting the number of terms in the expression
of fg, we see that the degree of fg is at most km. O

In many other papers ([3]-[5], [10]) we find more complicated proofs of this main result (see the
references of [1]).

Remark 3.4. Theorem 3.1 also implies another interesting result. Let f and g be two recurrent sequences
in S with their minimal linear shift operators L; and L, respectively. Then there exist a unique recurrent
sequence h € S such that ker Ly ® g ker Ly = ker Ly, where Ly, is the minimal linear shift operator of h.
We do not know if this i has something in common with the Hadamard product fg. Is it a new interesting
product of f and g7
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