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Abstract. It is known (see [1] or [5]) that the ellipsoid of revolution

x2 + y2

a2
+

z2

b2
= 1

satisfies the relation

km =
a4

b2
k3p,

where we denote the principal curvatures κ1 and κ2 of a rotational surface, whose cur-
vature lines are the meridians (m) and the parallels (p), by km and kp respectively.

It is proved in [8], and also in [9] in a different way, that any closed real analytic
surface of revolution satisfying km = µk3p, for any positive constant µ > 0, is congruent
to some ellipsoid of revolution. The aim of this paper is to motivate a generalization
of the previous result, using our local approach to the study of rotational Weingarten
surfaces given in [2], in order to characterize the non-degenerated quadric surfaces of
revolution in terms of a cubic Weingarten relation.
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1. Motivation

Following [5] or [11], the Weingarten surfaces are those whose principal curvatures κ1 and κ2 satisfy
a certain functional relation Φ(κ1, κ2) = 0, with Φ a smooth function. For example, the class of linear
Weingarten surfaces, i.e. those ones verifying a κ1 + b κ2 = c, a2 + b2 ̸= 0, c ∈ R, includes the important
family of constant mean curvature surfaces.

We emphasize the following classical result of S.S. Chern in 1945:

Theorem 1.1. [5] Consider a Weingarten C2-ovaloid, such that κ1 = f(κ2), with f a strictly decreasing
smooth function. Then the ovaloid is a round sphere.

Chern remarked (see also [1]) that any rotational ellipsoid in R3 satisfies κ1 = µκ3
2, with µ > 0, and

he used this as a counterexample in the sense that, for a characterization of spheres, one cannot modify
the assumption decreasing to increasing in his theorem.

Classical analytic examples of closed Weingarten surfaces were found by H. Hopf in 1951:

Theorem 1.2. [7] There are closed real analytic linear Weingarten surfaces of genus zero.

Some years later, K. Voss proved in 1959 the following classical striking result:

Romanian Journal of Mathematics and Computer Science Issue 2 (Special Issue), Vol. 13 (2023)

76



Theorem 1.3. [10] Any real analytic Weingarten surface of genus zero is rotational.

Inspired by the previous Chern’s results, S.T. Yau posed in 1982 (see [12]) the following problem:

Assume that the principal curvatures κ1, κ2, of a closed surface in R3 satisfy κ1 = µκ3
2,

µ > 0, in some order. Is the surface a rotational ellipsoid?

We should point out here that the meridian and parallel principal curvatures of a rotational surface
do not make sense anymore for arbitrary surfaces; this explains the in some order comment for κ1, κ2.

This problem has a positive answer on real analytic surfaces, thanks to the following result of Kühnel
and Steller in 2005:

Theorem 1.4. [8] If a real analytic rotational genus zero surface satisfies km = µk3p, µ > 0, where
km (resp. kp) denotes the principal curvature along meridians (resp. parallels), then it is a rotational
ellipsoid.

We point out that, under the condition of Yau’s problem, the Gauss curvature of the surface must be
non negative and thus it has genus zero. This fact, together with Voss’ theorem and the above result,
leads to a positive answer to Yau’s question in the real analytic case.

However, the answer is negative for C2 surfaces since I. Fernández and P. Mira constructed in [6] a
counterexample considering a rotational example that starts at the plane and then bifurcates from it
away from the axis. We must remark that this example satisfies the Weingarten condition kp = µk3m, for
some µ > 0.

On the other hand, we must also emphasize that an alternative proof of Theorem 1.4 was later given by
U. Simon as a consequence of the following local characterization of the non-degenerated quadric surfaces
of revolution.

Theorem 1.5. [9] Consider a non-degenerated rotational surface in R3 with non-vanishing Gauss curva-
ture and without umbilics. The principal curvatures satisfy the relation km = µk3p, for some real non-zero
constant µ ̸= 0, if and only if the surface is part of a non-degenerated quadric.

Our aim in this paper is to prove the same characterization of the non-degenerated quadric surfaces
of revolution without the hypothesis on the Gauss curvature and the umbilics, both necessary in Simon’s
proof because he used in a strong way techniques coming from differential affine geometry.

2. The geometric linear momentum of a rotational surface

In this section we deal with rotational surfaces, also called surfaces of revolution. They are surfaces
globally invariant under the action of any rotation around a fixed line called axis of revolution. The
rotation of a curve (called generatrix) around a fixed line generates a surface of revolution. The sections
of a surface of revolution by half-planes delimited by the axis of revolution, called meridians, are special
generatrices. The sections by planes perpendicular to the axis are circles called parallels of the surface.

We denote Sα the rotational surface in R3 generated by the rotation around the z-axis of a plane curve
α in the xz-plane. That is, α is the generatrix curve that we can consider parametrized by arc-length,
whose parametric equations are given by x = x(s) > 0, y = 0, z = z(s), s ∈ I ⊆ R. The function
x = x(s), s ∈ I ⊆ R, represents the distance from the point α(s) to the z- axis of revolution. Then Sα is
parametrized by

Sα ≡ X(s, θ) = (x(s) cos θ, x(s) sin θ, z(s)) , (s, θ) ∈ I × (−π, π).

Given any plane curve α in the xz-plane, we introduced in [2, Section 2] the geometric linear momen-
tum of α (with respect to the z-axis) as a smooth function assuming values in [−1, 1] that completely
determines it (up to translations in the z-direction). It is defined by K(s) = ż(s), where the dot ˙ means
derivation with respect to the arc parameter s. Geometrically, K controls the angle of the Frenet frame
of the curve with the coordinate axes. Moreover, in physical terms, K = K(s) may be described as the
linear momentum (with respect to the z-axis) of a particle of unit mass with unit speed and trajectory
α(s). We point out that K is well defined, up to the sign, depending on the orientation of α.

Romanian Journal of Mathematics and Computer Science Issue 2 (Special Issue), Vol. 13 (2023)

77



Remark 2.1. If the plane curve α = (x, z) is not necessarily parametrized by arc length, i.e. α = α(t),
t being any parameter, one can compute the geometric linear momentum K = K(t) by means of

K(t) =
z′(t)

|α′(t)|
,

where ′ denotes derivation respect to t.

The importance of the geometric linear momentum K lies in the fact that it allows to determine by
quadratures in a constructive explicit the plane curves α = (x, z) such that its curvature depends on the
distance to the z-axis, that is, it is given as a function of x, i.e. κ = κ(x). In this case, K = K(x) satisfies
K′(x) = κ(x) and the algorithm to recover the curve α = (x, z) involves the following computations (see
[3] and [4]):

(i) Arc-length parameter s of α = (x, z) in terms of x, defined —up to translations of the parameter—
by the integral:

(2.1) s = s(x) =

∫
dx√

1−K(x)2
,

where −1 < K(x) < 1, and inverting s = s(x) to get x = x(s).
(ii) z-coordinate of the curve —up to translations along z-axis— by the integral:

(2.2) z(s) =

∫
K(x(s)) ds.

Alternatively, if we eliminate ds in the above integrals, we obtain:

(2.3) z = z(x) =

∫
K(x)dx√
1−K(x)2

.

Thus we can summarize the determining role of the geometric linear momentum in the next result.

Corollary 2.2. [2, Corollary 1] Any plane curve α = (x, z), with x non-constant, is uniquely determined
by its geometric linear momentum K as a function of its distance to z-axis, that is, by K = K(x).
The uniqueness is modulo translations in the z-direction. Moreover, the curvature of α is given by
κ(x) = K′(x).

It is obvious that if we translate the generatrix curve α of a rotational surface Sα along z-axis, we
obtain a congruent surface to Sα. An immediate consequence of Corollary 2.2 is then the following key
result:

Corollary 2.3. [2, Corollary 2] Any rotational surface Sα, with generatrix curve α = (x, z), is uniquely
determined, up to z-translations, by the geometric linear momentum K = K(x) of its generatrix curve,
being x non-constant.

We can confirm the result established in Corollary 2.3 when we study the geometry of Sα through
its first and second fundamental forms, I and II, since a direct computation, using that κ(x) = K′(x),
shows that both can be expressed only in terms of the geometric linear momentum K and, of course, the
non constant distance x from the surface to the axis of revolution:

I ≡ ds2 + x2dθ2, II ≡ K′(x)ds2 + xK(x)dθ2.

Therefore we get the following expressions for the principal curvatures κ1 and κ2, whose curvature
lines are the meridians (m) and the parallels (p) respectively of the rotational surface Sα:

(2.4) κ1 ≡ km = K′(x), κ2 ≡ kp =
K(x)

x
.

Making use of Corollary 2.3, we can list the following characterizations of some simple surfaces of
revolution:
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Example 2.4. [2, Propositon 1]

(1) Any (horizontal) plane is uniquely determined by the geometric linear momentum K ≡ 0.
(2) The circular cone with opening θ0 ∈ (−π/2, π/2), given by x2 + y2 = cot2 θ0 z

2, is uniquely
determined by the geometric linear momentum K ≡ sin θ0.

(3) The sphere of radius R > 0, given by x2+ y2+ z2 = R2, is uniquely determined by the geometric
linear momentum K(x) = x/R.

Now we can pay attention to rotational Weingarten surfaces. In general, we just simply write
Φ(km, kp) = 0. But taking into account (2.4), we easily deduce that the above functional relation

translates into a first-order differential equation Φ̂(x,K(x),K′(x)) = 0 for the geometric linear momen-
tum K = K(x) determining Sα according Corollary 2.3. This will be the simple idea in the proof of our
main result in next section.

3. Cubic rotational Weingarten surfaces

It is known (see [1]) that the ellipsoid of revolution (see Figure 1)

(3.1)
x2 + y2

a2
+

z2

b2
= 1

satisfies the relation

(3.2) km =
a4

b2
k3p.

For our purposes, recalling Corollary 2.3, we need to compute the geometric linear momentum of the
ellipsoid (3.1). We parametrize the generatrix semiellipse by x = a cos t, z = b sin t, t ∈ [−π/2, π/2],
and using Remark 2.1, it is not difficult to conclude that

(3.3) K(x) =
bx√

a4 − (a2 − b2)x2
.

Then, using (2.4), we can check (3.2) easily.

Figure 1. Ellipsoid of revolution

We proceed in the same way with the one-sheet hyperboloid of revolution (see Figure 2)

(3.4)
x2 + y2

a2
− z2

b2
= 1,

obtaining, from the generatrix hyperbola x = a cosh t, z = b sinh t, t ∈ R, and Remark 2.1, that

(3.5) K(x) =
bx√

(a2 + b2)x2 − a4

and now we can check that the one-sheet hyperboloid of revolution satisfies the relation

(3.6) km = −a4

b2
k3p.
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Figure 2. One-sheet hyperboloid of revolution

However, for the two-sheets hyperboloid of revolution (see Figure 3)

(3.7) −x2 + y2

a2
+

z2

b2
= 1,

as now the generatrix hyperbola is x = a sinh t, z = ±b cosh t, t ≥ 0, we obtain from Remark 2.1 that

(3.8) K(x) =
bx√

a4 + (a2 + b2)x2

and so we arrive at the following relation satisfied by the two-sheets hyperboloid of revolution:

(3.9) km =
a4

b2
k3p,

that it is formally the same than the one (3.2) of the ellipsoid of revolution.

Figure 3. Two-sheets hyperboloid of revolution

Finally, for the paraboloid of revolution (see Figure 4)

(3.10) z =
x2 + y2

2a
,

we use the generatrix parabola x = t, z = t2

2a , t ≥ 0, and

(3.11) K(x) =
x√

a2 + x2

and then the paraboloid of revolution satisfies the relation

(3.12) km = a2k3p.

Now we are in a position to state our main result in this section characterizing all the quadric surfaces
of revolution in terms of a cubic Weingarten relation.

Theorem 3.1. [2, Theorem 2] The only rotational surfaces satisfying km = µk3p, µ ̸= 0, are the plane
and the non-degenerated quadric surfaces of revolution.
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Figure 4. Paraboloid of revolution

Proof. Using (2.4), the cubic Weingarten relation km = µk3p translates into the separable o.d.e.

K′(x) = µK(x)3/x3.

Its constant solution K ≡ 0 leads to the plane (see Example 2.4). Its non-constant solution is given by

(3.13) K(x) = ± x√
µ+ c x2

, c ∈ R.

We are going to identify the rotational surfaces uniquely determined, up to z-translations, by the one
parameter family of geometric linear momenta (depending on c) given in (3.13) (see Corollary 2.3). There
is no restriction if we only consider plus sign in (3.13).

We distinguish two cases according to the sign of µ.

• µ > 0. We separate in turn three possibilities:

(i) c < 1: Then a2 = µ
1−c is well defined, and putting b2 = a4

µ , we conclude that (3.13) is

exactly (3.3) and Corollary 2.3 gives that we arrive at the ellipsoid of revolution (3.1).
In particular, if c = 0, we obtain the sphere of radius

√
µ (see Example 2.4).

(ii) c > 1: We now define a2 = µ
c−1 and b2 = a4

µ . Then we obtain that (3.13) is exactly (3.8)

and Corollary 2.3 concludes that we arrive at the two-sheets hyperboloid of revolution (3.7).
(iii) c = 1: We define a2 = µ and we conclude that (3.13) is exactly (3.11). We deduce from

Corollary 2.3 that we arrive at the paraboloid of revolution (3.10).
• µ < 0. Since µ+ c x2 > 0 from (3.13) and taking into account that always K(x)2 < 1, we deduce

that (1 − c)x2 < µ < 0 and so c > 1. Then a2 = µ
1−c is well defined, and putting b2 = −a4

µ ,

we conclude that (3.13) is exactly (3.5) and Corollary 2.3 gives us the one-sheet hyperboloid of
revolution (3.4).

This proves the result. □
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