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Abstract. Generalized Möbius-Listing surfaces and bodies generalize Möbius bands,
and this research was motivated originally by solutions of boundary value problems.
Analogous to cutting of the original Möbius band, for this class of surfaces and bodies,
results have been obtained when cutting such bodies or surfaces. The results can be
applied in a wide range of fields in the natural science, and here we propose how they
can serve as a model for the heart and the circulatory system.
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1. Introduction

The classical Möbius band can be realized by sweeping a line piece along a circle as central basic
line, and perpendicular to this basic line; moreover, the basic line cuts the piece of line exactly in the
middle (Figure 1a). Figure 1 shows how a ribbon can be connected, with an odd or even number of
twists (the upper index). In the case the number of twists is odd, the surface is called non-orientable,
and the surface is one-sided; in other words, a traveler moving on the Möbius band will return at his
or her original position and will have visited all parts of the ribbon (“Möbius condition”). In contrast,
when the number of twists is even, then the surfaces will be like a cylinder, with an inner and an outer
surface (“Cylinder condition”). A traveller starting on one side will return on the same side, and not see
the other side. A Möbius band can be painted with a single color, for a cylinder, two colors are needed.

Generalized Möbius-Listing surfaces and bodies (GML) generalize the Möbius band or ribbon in a
geometrical way: both the basic line and the cross section can be chosen from a wide range of shapes.
Instead of starting from a ribbon, GML’s start from prisms (or cylinders), of which the two ends are
connected. The notation is GMLn

m and in this sense Figures 1a-d havem = 2, hence the notation GMLn
2 .

When n = even, the shapes have cylinder condition, and when n = odd, the shapes exhibit the Möbius
condition [31], [37]. In a recent article, these shapes have been called the Möbius helicoid (isometric to a
linear helicoid) and have been related to masses of elementary particles and to the Lorentz factor by the
number of twists. The Möbius band provides for the natural phase space for fermionic fields, whereas the
cylinder provides this for bosonic fields [19]. Möbius bands are also very common in chemistry [21], [30].

These, however, are only the simplest of possibilities. Both the path and the cross section that is swept
along the path can be extended to include polygons, rose curves and Gielis curves, and the end points
need not be connected. In Section 2 Generalized Möbius-Listing surfaces are defined, which are closed
figures. One can image a prism with a certain cross section, of which the two ends are joined. They are
a subset of Generalized Twisting and Rotating Surfaces and Bodies GTRn

m, which are in general open
structures. In Section 3 and 4 some main results of cutting GMLn

m surfaces and bodies are recalled,
and in Section 5 the conditions under which a Link-1 single body with Möbius phenomenon is obtained
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Figure 1. Ribbons with twists before joining. Case a. is the classic Möbius strip.

after cutting, are defined. Since the analytic definitions of GMLn
m surfaces and bodies allow for dynamic

changes, the question arose how much of the whole body needs to have the specific conditions to obtain
the results after cutting. As shown in Section 6, it turns out that only one cross section is needed with
the right conditions, and several examples are given. Finally in Section 7 we explain how the heart is a
GMLn

m body, and we propose that this can be extended to the whole circulatory system. The dynamics
of the heart and the whole system can then be considered as a switching between cylinder and Möbius
conditions.

2. Generalized Möbius Listing surfaces and bodies

Generalized Möbius-Listing Bodies GMLn
m are defined analytically by Equation (2.1) [35]:

X (τ, ψ, θ, t) = T1 (t) +
[
R (θ, t) + p (τ, ψ, θ, t) cos (ψ + nθ

m )
]
cos(θ +M(t))

Y (τ, ψ, θ, t) = T2 (t) +
[
R (θ, t) + p (τ, ψ, θ, t) cos (ψ + nθ

m )
]
sin(θ +M(t))

Z(τ, ψ, θ, t) = T3 (t) +Q(θ, t) + p (τ, ψ, θ, t) sin
(
ψ + nθ

m

) )(2.1)

,
X,Y, Z, t is the ordinary notation for space and time coordinates and τ, ψ, θ are local coordi-

nates where τ ∈ [−τ∗, τ∗] , with 0 < τ ;ψ ∈ [0; 2π] and ϑ ∈ [0; 2πh], with h ∈ R. The functions
T1,2,3(t), R(ψ, θ, t), p(τ, ψ, θ, t), M(t) and Q (θ, t), as well as parameter µ = n

m , define simple move-
ments.

Definition 2.1. The basic line of a GMLn
m body is the continuous closed, generally spatial curve,

generated by the center of the prism in its movement necessary to obtain, after n twists, the joining of
the two opposite faces of the prism. This basic line can be a circle P∞ (and any curve homeomorphic
to a circle) or a self-intersecting curve like a Pascal’s limaçon, which closes after two full rotations. The
basic line can also be other planar or space curves, for example, Gielis curves [8], [24], [11], or Grandi
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(rose) curves ρ = cosmθ [33]. In this general case the notation GMLn
m(v) is used with v ∈ Q denoting

the shape of the basic line, with v = 1 if the basic line is a circle.

Figure 2. (a-e) Identification of vertices, with twists leading to GMLn
m.

Definition 2.2. The twisting parameter µ = n
m describes the characteristic of twisting where m is the

number of vertices of the regular polygon Pm (the shape of the radial cross section) and n is the number
of twisting of the cross section of the prism before identification of its ends. If µ = n

m is an integer number
(n = km), then the corresponding lines makes k coils after one rotation around the torus. If n

m ∈ Q then
the corresponding line makes n coils after m rotations around the torus. If n

m ∈ R\Q then the line makes
infinite coils after infinite rotations around the torus without self-intersections.

Definition 2.3. A rib of the GMLn
m(v) for each v ∈ Q, is a continuous closed, in the general case,

spatial line on which are situated only the vertices of the radial cross section of this body (i.e., the torus
line with characteristic n

m ). Between the ribs, planes or curved surfaces can be spanned giving rise to a
GMLn

m side surfaces (Figure 2), and if the whole structure is solid (i.e., all cross sections are disks), then
one obtains GMLn

m bodies.

Obviously one can also define shell structures, by limiting the radial function of the cross sections.
GMLn

mbodies and surfaces are always closed, hence they are a subset of closed Generalized Twisting and
Rotating bodies GTRn

m [35]. In this general, case the ends of the prims need not be closed, and the basic
line can be a spiral, a helix or any 3D curve.

The original motivation to study GMLn
m surfaces and bodies is that the solution of boundary value

problems for partial differential equations is easier to obtain with direct knowledge of the domain, and
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with the extension of surfaces to bodies, also of the internal geometry and connected domains inside
GMLn

m bodies. It allows for understanding the precise relation between the asymptotic behavior of
solutions and the geometrical structure of boundary [35]. GML surfaces generalize a wide range of 3D
surfaces, including implicit, tube and canal surfaces [1], [5], and twisted structures [17]. They provide
for a generic model for strings (see [26]), but in contrast to strings, GML bodies and surfaces are not
elementary, since they can be cut, however small the size.

3. The cutting problem

Definition 3.1. Cutting of a GMLn
m body with a regular polygon as cross section is performed with (1)

a straight knife, which (2) cuts perpendicular to the polygonal cross section of the surfaces and bodies,
and (3) the knife cuts the m-polygon boundary exactly in two points or two times (depending on the
thickness of the knife). For (3) there are three possibilities: the cut of the polygon can be from a vertex
to a vertex V V , from a vertex to a side or edge V S, or from side to side SS (=edge to edge). The precise
orientation of this knife (and the positions where it cuts the boundary) is maintained during the complete
cutting process, until the knife returns to its starting position, and the cutting is completed.

The point of the knife traces out a toroidal line along the body or surface. In general, cutting leads to
separate bodies or surfaces, but in particular cases, a single body results, similar to the single surface that
results from cutting the original Möbius band along the basic line. In most cases very complex structures
are obtained [32], [39]. Figure 3 shows the result of cutting a pentagonal GML from side 1 to side 3,
below center [39]. The result is three different bodies, (triangular, quadrangular, and pentagonal), linked
together as a Link-3 object. Each of these objects has a certain number of twists and the structures can
be knot-like. Such structures have been observed in quantum chemistry [20].

Figure 3. Three different ways of cutting a pentagon side to side. Below: Case

BII, S1,3 and the different outcomes connected via Link-3.

In analogy with the cutting of a classic Möbius band along the central line, we define the Möbius
phenomenon as follows:

Definition 3.2. The Möbius phenomenon occurs when, after cutting of a GMLn
m body or surface, a

single body or surface results, where one can travel along a rib or a side surface and return to the original
position.

Cutting the Möbius band along the basic line, yields a single surface. If it is cut along any other
straight line, the result is a link of two different surfaces. The second author generalized this result for
any n and m, and for any number of knives [32]. When dealing with GML surfaces and bodies, more
objects can result after cutting. Depending on where precisely the knife cuts (through the centre of the
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polygon or not; from vertex to vertex; from side to side, or from vertex to side), and on the cross section
and the number of twists of the GMLn

m many different outcomes result [35]. In Figure 3 three different
results of SS1,3 cuts are shown, with two cases of Link-3 (three bodies) and one case of Link 4 (four
bodies). The only difference is the particular spot on the sides where cuts are made.

Figure 4. Cutting of GMLn
4 bodies, without (left) or with twist (right).

After cutting very complex structures can result, but under certain conditions, a single body will
result. Figure 4 shows all possible results after cutting of an untwisted and a twisted square torus. Here
SS1,2 and S1,3 indicate that the knife cuts from side 1 to sides 2 and 3 respectively. Likewise, V S stands
for vertex-to-side cuts and V V for vertex-to-vertex cuts. In case B and D (Figure 4 left), the cut is
through the center) of a GML body with square cross sections; the result is always two bodies. In case
BII and D (Figure 4 right) with cut through the center of a GML body with square cross section, the
result is always a single body, denoted by Link-1. The results have been classified for lower symmetries
(m = 2, 3, 4, 5, 6) [35], [32], [36], [15], [6]. The results of cutting GML for the general case have been
reported in [12], in Theorems 3.3 and 3.4.

Theorem 3.3. The geometrical solution. The total number of different ways of cutting an m-polygon
Ξgeo
m is the number of 1 or m cuts, times the number of divisors of m.

(1) For even m (= 2k): Ξgeo
m = Ndiv

m

(
m+ 1 +NSS

m−2

)
(2) For odd m (= 2k + 1): Ξgeo

m = Ndiv
m

(
m+ 2 +NSS

m−2

)
Theorem 3.4. The topological solution

(1) If m = 2k + 1 and has N nontrivial divisors d2, d3 . . . dN+1 and d1 ≡ 1, dN+2 ≡ dm ≡ m,
then the number of all possible variants of cutting of GMLn

m bodies is Ξtop
m = 8k + 1 + 3Nk +∑N+1

i=2

[
k
di

]
+ 2N

(2) If m = 2k and has N nontrivial divisors d2, d3 . . . dN+1 and d1 ≡ 1, dN+2 ≡ dm ≡ m,
then the number of all possible variants of cutting of GMLn

m bodies is Ξtop
m = 8k − 5 + 3Nk +∑N+1

i=2

[
k−1
di

]
−N
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Remark 3.5. The topological solution is a slightly different form compared to Th 3.3:
∑

all div (Nm=2k) =
Ξtop
m depending on whether the total number of variants is expressed in terms of total number of divisors

or total number of non-trivial divisors N (excluding d1 and dm). The proof of Theorem 3.4 is based on
the fundamental facts from the theory of cyclic groups with a finite number of elements (m);

(1) The number of cyclic subgroups is the number (N) of nontrivial divisors of m.
(2) The number of elements in each subgroup is the number of transactions and equal to the gcd(m, i)
(3) The number of cuts is either 3 or 1, (3 or 1 mod 8) and this is determined by the property of

the subgroup and the property of the cut line – i.e. when the number of cuts is three, then the
ends of the survey line lie on the same strings of the initial polygon, except for the case when
k = [m/2] + 1

(4) If k = [m/2]+ 1 , and for an odd number m the number of cuts is 5, and for even m the number
of cuts is 2. This is determined by the property of the subgroup and the property of the cut
line. In the latter case m = 2k an important role is played by the rotational symmetry.

Remark 3.6. Ongoing research focuses on defining the exact shapes resulting from cutting, see [34],
[38].

4. 3-D Bodies and 2-D cross sections with R-functions

Theorems were derived after the problem of cutting of 3D GML surfaces and bodies could be reduced
to a problem of planar geometry, whereby the results depend only on the cross section p (τ, ψ, t) and
the twisting parameter µ. The self-intersecting curves for any rational m, lead to various sectors in the
polygons or cross sections of the GML body. In Figure 3 the Link-3 cases have three zones, while the
Link-4 case has four different zones of different shapes indicated with 4 different colors. In GML bodies,
when cut and separated, these zones represent different bodies of 3D GML surfaces and bodies.

For rational m = p/q, the number of zones created is determined by q, and the symmetry of the
polygons/polygrams is determined by p. In Figure 5 Left panel, five different layers or zones can be
defined in different shades of blue. Layers L0 to L4 are defined as a combination of layers from inside to
outside and all layers have 7 maxima and 7 minima. A ray drawn from the center 0 in any direction has
multiple values indicated by I0 to I4 (red dots). When rotating the ray around the centre, the values of
I0 define the boundaries of L0 and the ray then sweeps the full area of L0. Values of I0 and I1 define the
boundaries of L1, and here I0 and I1 coincide at maxima for L0 and at minima for L1. In the same way,
values of Ii and Ii+1 define layer Li+1.

In this way zones can be defined, not only as stacked layers L in Figure 5a, but as separate layers or
combinations of layers. We define li as separate zones based on the different hues of blue zones in L0,...,4

in Figure 5 left panel. Examples of separate zones or combinations are given in Figure 4b; clockwise,
from upper left (with L0 = l0) [7]:

(1) l1 = L1 − L0

(2) l2 = L2 − L1

(3) l3 = L3 − L2

(4) l1 + l2 = L2 − L0

The zones and the independent domains separated by lines correspond to self-intersecting curves.
These independent figures can be connected into layers or zones (Figure 5a,b) using R-functions [12],[7].
Basic Boolean operations can be used to define the different layers and separate sectors like those in
Figure 5, and these can be translated into geometric language, using R-functions, whereby the different
layers or different sectors are defined as single geometrical domains or combinations of single domains.

One of the most commonly used R-functions are Rp functions, defined by |x1|p + |x2|p ± [|x1|p + |x2|p]
1
p ,

with + and - denoting conjunction and disjunction. Hence separated regions in 2D cross sections of GML
in general can be defined as coherent structures, completely in line with the fact that in 3D the structures
are indeed coherent.
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Figure 5. Left: Different layers in Rational Gielis curves RGC. Right: RGC

for p = 5 and q = 4 with different zones defined [7].

Remark 4.1. The process of cutting does not necessarily lead to the different substructures falling
apart. One can think of various physical process that creates different domains without separation, such
as torsion or vibration [12], [14]. Furthermore, if the cross section of the prism is a rose curve, then the
process of connecting two ends of the prisms leads to single of multiple hollow bodies or tubing systems,
depending on the twisting [33].

Remark 4.2. R-functions are not restricted to Boolean operations, but can be extended to n-valued
logics and n partitions of space [29]. Examples of extensions of R-functions to 3-valued logics are found
in [9], [18].

5. Link-1 with Möbius Phenomenon after cutting

Under certain conditions cutting of twisted GML’s, can yield a single body (Link-1). It happens when
the cut is through the centre (cases BII and D in Figure 4b). With the process of cutting described above,
with a knife cutting from side to side, vertex to vertex or side to vertex, it turned out that a single body
could only be obtained for polygons with an even number of vertices and edges, and only when the cut
was through the centre (cases BII and D in Figure 4b). The knife used in this cutting is called a chordal
knife, since it cuts the polygon in precisely two points.

Theorem 5.1. In the cutting of GML bodies with chordal knives, the Möbius phenomenon with one
resulting body and link number Link-1 can appear only for m even and when the knife cuts through the
centre.

Using a radial knife on the other hand cuts the polygon in precisely one point and then the Möbius
phenomenon can be obtained for m = odd and m = even, odd and even polygons, respectively [13].

Theorem 5.2. In the cutting of GML bodies the Möbius phenomenon can appear for both m odd and m,
when the knife is a radial knife, a ray starting at the centre of the polygon.

Remark 5.3. A chordal knife is named after a chord, defining the trigonometric functions on a circle.
A radial knife starting in the center is the position vector. This acts as the hand of a clock with discrete
ticks (Figure 6) but with continuous movement within a GMLn

m body, keeping a fixed direction from
center to the vertex. The tip of the position vector traces out a toroidal line, wound around the torus,
now in a continuous way.
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Figure 6. Radial knife or position vector

6. A single cross section with the right symmetry suffices

The cross section of the GMLn
m is generally assumed to be constant along the whole structure, whereas

Equation (2.1) allows for a changing cross section along the GMLn
m. A direct example of a GMLn

m body
with changing cross section is when the cross sections change along the body. These changes can occur
smoothly or in discrete jumps. Equation (2.1) includes a time variable t, important if the GMLn

m body
represents any physical or biological system. The question then is whether all cross sections have to
retain the condition of rotational symmetry, to achieve the Link-1 or Möbius phenomenon. Will a Link-
1 structure still occur if the cross sections of the GMLn

m change from the starting point, where the
conditions are met, to an intermediate section that does not meet these conditions, and again close with
the original cross section? The answer is:

Theorem 6.1. [16] In the cutting of GMLn
m bodies under the above conditions (radial knife cutting

through the center for both odd and even regular polygons, or chordal knife cutting through the center for
even regular polygons) a sufficient condition is that only one cross section is rotationally symmetric, to
obtain the Link − 1 result with the Möbius phenomenon.

Proof. The cross sections at the start and end of the GMLn
m body are the same. If cross sections

are denoted as S0,S1,S2,. . . , Sq, then the set of all cross sections is denoted as [S0, S1, S2, . . . , Sq]. The
sequence of cross sections can be continuous for q → ∞, discrete for q < ∞, or partially discrete,
partially continuous. The condition for a smooth joint of both ends is when S0 = Sq. Additionally the
orientation of both is twisted before joining (e.g. 180° in the case of a square), denoted as ↑ S0 = ↓ Sq.
For cutting, one can assume the same, constant shape along the whole GMLn

m bodies, so that the knife
follows the classical toroidal lines (ribs or slit surfaces). In this case only S0 and Sq are relevant, but not
]S1, S2, . . . , Sq−1[, and the cutting then reduces to the general case of cutting GMLn

m bodies. □

Remark 6.2. For the proof of Theorem 6.1 a simplified version can be used, since only the cross section
p (τ, ψ) and the twisting parameter n, are involved.

Remark 6.3. Since one can always find a way of cutting (or division of zones) whereby at the end of
the day, the whole shape turns out to be a one-sided body, coherent in any sense of the word. As long as
one cross section fulfills the conditions, all other cross sections ]S1, S2, . . . , Sq−1[ may be anything.

Example 6.4. [16] The cross sections ]S1, S2, . . . , Sq−1[ may consist of dispersed data points, distributed
according to some probability (density) function or randomly (maximum entropy). As long as the cut
is executed correctly, the result will be a single body (Link-1), displaying the Möbius phenomenon of
one-sidedness.

Example 6.5. [16] Figure 7 shows a GMLn
4 structure connected to a brane [15]. Since the two sections

at the brane are the same, namely S0 ≡ Sq, one can define the cutting process in such a way that,
whatever goes in comes out the same on the other side, so that everything remains connected as a Link-1
irrespective of what happens inside the GML-wormhole.
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Figure 7. Partial or complete GML bodies, with cross sections on brane [12]

Example 6.6. A tubing system with cross section S0 that branches out into various ever smaller tubes;
then the smaller tubes rejoin into larger tubes, to end up with the original tube size at Sq. Such branching
may conserve area at every stage. One example is the branching in the circulatory system, with main
vessels (Aorta, Superior and Inferior Vena Cava and pulmonary arteries and veins), arteries, arterioles
and capillaries) [43].

The circulatory system has evolved with physical separation of transport and exchange, with transport
from the heart to lungs and the body via main veins and arteries, and exchange via the capillaries and
the alveoli in lungs. In the latter case the capillaries and alveoli are porous for exchange of gases, creating
the possibility for a single sided surface.

Proposition 6.7. The branching of the circulatory closed or open system can be partially transport and
partially exchange.

In the first case we have a partial tubing system, where the system of tubes has an outside and an
inside, analogous to a torus and Transport is key function. In the second case, inside and outside are
connected via pores and oxygen and carbondioxide can flow in and out of the cells into the tubing systems
(and in reverse order in the lungs). Exchange is the key function. Beyond the physical separation, the
dynamics of the heart and the circulatory system may be understood as switching between transport and
exchange.

7. Switching between cylinder and Möbius condition

The heart evolved from a tubular open structure to a circulatory system, with every increasing com-
plexity [2], [22]. As tubular structures the main action to move fluids is via peristaltic movement. Such
structures can be modeled as GTR bodies, for primitive open structures, or as GML bodies for closed
circulatory systems. The original circulatory tubular system later evolved into folded structures, creating
the heart characteristic of higher animals (mammals, fish, reptiles, amphibians), with different chambers
and valves.

The Spanish cardiologist Torrent-Guasp considered the heart as a helical structure, based on the study
of one thousand hearts of humans, various mammals, reptiles and amphibians, fish, and of worms [40],
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[41], [42], [23], [3], [4]. Torrent-Guasp’s model of the helical heart includes the cardiac structures that
produce two simple loops that start at the pulmonary artery and end in the aorta, unraveling the Gordian
knot of the architectural arrangement of ventricular muscle mass [40]. Figure 8 left shows the unfolding of
the heart into a helical structure. For Torrent-Guasp the simplest model of a heart is a rope closing in two
rotations [40], [41]. It is thus also a GMLn

m body (m = 1/2 closing in two rotations, hence a 1/2-angle).
The rope model and the ½ angle have constant cross-section along the path, but this can change along
the path in Equation (2.1). The relation of the helical heart and Generalized Möbius-Listing surfaces
and bodies was suggested by Dr. Mamanthi Rogava [28].

Figure 8. Left: unraveling of the heart. Center: Rope model of the heart.

Right: Overview of the circulatory system

We propose that the whole circulatory system, with the heart as central organ, can be considered as
a single system. The whole system then is a single GML body (with annular cross-section), whereby the
aorta and the vena cava have a (approximately) circular cross section. From the analytic definition, in
particular the twisting parameter in Equation (2.1) a GML surface or body can either exhibit a cylinder
phenomenon or a Möbius phenomenon. A question is whether a system exists that can switch between
both states. Here the Torrent-Guasp model provides a clue, in the sense that the motion of the heart
is spiral, with a twist [40], [3]. In this way, the heart has two states, in which the two S0−Aorta and
S0−V enaCava have a relative orientation to each other. Assuming that the positions can switch because
of the continuous twisting and untwisting of the structure [40], we have:

Proposition 7.1. If two sections suffice (S0−Aorta and S0−V enaCava) in GML, and the motion of the
helical heart is a twist rotation, alternate switching between two-sided (Cylinder) and one-sided (Möbius),
then the function can switch from Transport (Cylinder) to Exchange (Möbius).

Remark 7.2. Simply twisting a GML body with annular cross section does not create a Möbius phe-
nomenon of the structure, but it occurs both on the outer and inner surfaces. By separating zones in the
blood stream, certain zones can achieve the Möbius phenomenon. See Remark 4.1.

Remark 7.3. Our proposition focuses in first instance on the spiral movements of the Torrent-Guasp
model [25], but Dr. Rogava considers three different movements of the heart, including the displacement
of the center of gravity. For this he considers the Möbius-Listing-Tavkhelidze three-dimensional body
winding principle, as a better model [27].
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Our models focus not only on shape and geometry, but also on transport of physical entities or energy,
and on exchange between very different structures. It is contemplated that the geometric models as de-
scribed for the circulatory systems, using Generalized Twisting and Rotating Bodies (GTR), Generalized
Möbius Listing surfaces and bodies (GML), and Gielis transformations [8] can be extended to include
systems in biology, botany, ecology, physics (e.g., open and closed thermodynamic systems) and even
spacetimes [10].
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surfaces and bodies, and Arnold’s Cat phenomenon, Advanced Studies, Euro-Tbilisi Mathematical
Journal 14(4) (2021), 17-35. DOI 0.32513/asetmj/1932200812

Romanian Journal of Mathematics and Computer Science Issue 2 (Special Issue), Vol. 13 (2023)

68



[17] W. Goemans and I. Van de Woestyne, Clelia curves, twisted surfaces and Plücker’s conoid in Eu-
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