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1. INTRODUCTION

We will denote by CP™ the complex projective space with complex dimension m > 2 equipped with
the Kéahlerian structure (J, g), where ¢ is the Fubini-Study metric with constant holomorphic sectional
curvature 4. Consider a connected real hypersurface M in CP™ with local unit normal vector field NV
and define the structure (or Reeb) vector field on M by £ = —JN. If for any vector field X tangent to
M we write JX = ¢X + n(X)N, where $X denotes the tangential component of JX, ¢ is a tensor of
type (1, 1) on M called the structure operator of M and the 1-form 7 is given by n(X) = g(X,¢), for
any X tangent to M. We continue denoting by g the restriction of the metric on CP™ to M. Then
(¢,€,m,9) is an almost contact metric structure on M. Therefore ¢¢ = 0, n(&) =1, ¢2X = —X + n(X)¢
and g(¢X, Y ) = g(X,Y) —n(X)n(Y), for any X,Y tangent to M, [1].

Denote by V the Levi-Civita connection on M and by A the shape operator on M associated to N.
As J is parallel with respect to the Levi-Civita connection V on CP™, we get
(Vx9)Y =n(Y)AX —g(AXY)§, Vx{=pAX,
for any X,Y tangent to M. The Codazzi equation is given by
(VxAY — (VyA)X =n(X)oY —n(Y)¢X —29(¢X,Y)E,
for any X,Y tangent to M.

M is called Hopf if € is an eigenvector of A. That is, A{ = & for a certain function « on M, called the
Reeb curvature of M. The maximal holomorphic distribution D on M is given by D(p) = {X € T,M/
9(X,&) = 0}, for any p € M. Takagi, [14], [15], classified homogeneous real hypersurfaces of CP™ in 6
types. Kimura, [5], proved that such types are the unique Hopf real hypersurfaces in CP™ with constant
principal curvatures. We mention the following types in Takagi’s list:

(A1): Geodesic hyperspheres of radius 7, 0 < r < 5. They are the unique real hypersurfaces in
CP™ with 2 distinct principal curvatures, [2].
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(A2): Tubes of radius r, 0 < r < 7, around totally geodesic complex projective spaces CP",

0 <n <m — 1. They have 3 distinct constant principal curvatures.

Okumura, [9], proved that both types, that we will call type (A) real hypersurfaces, are the unique
ones in CP™ satisfying A¢p = ¢A.

As examples of non Hopf real hypersurfaces in CP™ we can mention ruled real hypersurfaces, in-
troduced by Kimura, [6], as real hypersurfaces such that D is integrable and have CP™~! as integral
manifolds. Equivalently g(AD, D) = 0. For examples, see [6] and [7].

The Tanaka-Webster connection is the canonical affine connection defined on a non-degenerate, pseudo-
Hermitian CR-manifold independently by Tanaka, [16], and Webster, [18]. Tanno [17] generalized such
a connection for contact metric manifolds and from this generalization, for any nonnull real number £k,
Cho, [3], [4], defined the k-th generalized Tanaka-Webster connection on a real hypersurface M of CP™

by

VY = VxY + g(pAX,Y)E - n(Y)SAX — kn(X)Y,

for any X,Y tangent to M. This is a metric connection, @(k)g =0, and also @(k)d) =0, @(k)f =0 and
V®p = 0. In the particular case of pA + Ap = 2k¢, M is a contact manifold and V*) coincides with
the Tanaka-Webster connection.

The k-th Cho operator associated to X, tangent to M, is defined by F)((k)Y =g(pAX, YV)E—n(Y)pAX —
kn(X)¢Y, for any Y tangent to M. Then the torsion of V*) is TH)(X,Y) = F)((k)Y - Fl(,k)X. Notice
that if X e D, F )((k) does not depend on k£ and we will denote it simply by Fx.

We will also call the k-th torsion operator associated to the vector field X tangent to M to
T)((k)Y =T®(X,Y), for any Y tangent to M.

Let £ be the Lie derivative on M. We know that for any X,Y tangent to M, LxY =VxY — Vy X.
This expression allows us to define a differential operator of first order on M, that we will call the
derivative of Lie type associated to V®) and is given by Eg];)Y = @()];)Y — @gf)X =LxY + T)((k)Y for
any X,Y tangent to M.

Let B be a symmetric operator on M. We will consider the tensor field of type (1, 2) on M given by
BP(x,v)= (VP - vx)B)Y = [F, By = F{)BY — BFPY for any X,Y tangent to M.

We also can consider a second tensor field of type (1, 2) on M given by ngk) (X,Y) = ((Eg?) —Lx)B)Y =
. Bl =T¥ BY — BT¥Y, for any X, Y tangent to M.

Let © be another operator on M and @ a tensor of type (1, 2) on M. Tachibana, [13], introduced
the notion of @ being pure with respect to © if Q(0X,Y) = Q(X,0Y) for any X,Y € TM. In the
case of the same equality for any X,Y € D, we will say that @ is n-pure with respect to ©. Tachibana
also gave the following definition: @ is hybrid with respect to © if Q(OX,Y) = —Q(X,0Y) for any
X, Y € TM. If this equality is satisfied for any X, Y € D we will say that @) is n-hybrid with respect to ©.

In [10] we presented some generalizations of the conditions Agf) =0, AgfC ) = 0. Now we will study
purity (n-purity) and hybridness (n-hybridness) of such tensors with respect to either ¢ or A.
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2. PURITY AND HYBRIDNESS OF A anp A% witH rEsPECT TO ¢

Suppose that m > 2 and A%C) is n-pure with respect to ¢. Then we have

(2.1) g(0A9X, AY) —n(AY)pAGX — g(¢APX,Y )AL
= 9(9AX, APY)§ — n(AY )pAX — g(AX,Y) AL,
for any X, Y € D.

If we suppose that M is Hopf with Reeb curvature «, we know, [8], that « is constant and if X € D

satisfies AX = AX, then 2\ — a # 0 and A¢pX = pe X, with p = 5‘3_*2 Then the scalar product of (2.1)
and £ gives ApApX — apApX = —pAPAX — apAX, for any X € D. If X € D satisfies AX = AX, we

get 22 = oy + ). From the value of y this yields aA® + 2\ = aA? + . Then A = $. This implies

a\ = %2 = 0 and therefore, « = A = 0, a contradiction, as 2\ — a # 0.

If M is non Hopf we can write A = o€ 4+ SU, where U is a unit vector field in D and «, 8 are functions
with 3 # 0, at least on a neighbourhood of a point p € M. Call Dy = {X € D/g(X,U) = g(X, ¢U) = 0}.
Taking the scalar product of (2.1) and either ¢U or U or Z € Dy we obtain either AU = ¢, ApU = 0,
AZ =0, for any Z € Dy. Therefore we get

Theorem 2.1 ([11]). Let M be a real hypersurface in CP™, m > 2. Then Agf) is m-pure with respect to
¢ if and only if M is locally congruent to a ruled real hypersurface.

A similar proof for the case of A%ﬂ) being n-hybrid yields

Theorem 2.2 ([11]). Let M be a real hypersurface in CP™, m > 2, and k a nonnull real number.

Then Agf) is n-hybrid with respect to ¢ if and only if M is locally congruent to one of the following real
hypersurfaces:

e a tube of radius 7 around a complex submanifold of CP™,
e a real hypersurface of type (A),
e a ruled real hypersurface.

Remark 2.3. First case in Theorem 2.2 corresponds to Hopf real hypersurfaces with Reeb curvature
equal to 0, see [2].

Remark 2.4. If we suppose that Agf) is pure with respect to ¢ we should have

(2.2) g(¢pAdX, AY)E — n(AY)pAPX — g(9APX, Y )AL + n(Y)APAGX = g(¢AX, APY)¢

— N(APY)PAX — kn(X)pAPY — g(pAX, §Y) A& + kn(X)Ap?Y,
for any X, Y tangent to M. From Theorem 2.1 we have that, in particular, M must be locally congruent
to either a real hypersurface of type (A) or to a ruled one. In the first case, bearing in mind that A¢ = ¢A
and taking X € D, Y = ¢ in D we arrive to a contradiction. Moreover, if M is ruled and we take X = ¢,

Y = U in (2.2) we should have —BA¢ — kAU = 0. Its scalar product with U yields 4% = 0, which is
impossible. Therefore,

)

Corollary 2.5. There does not exist any real hypersurface in CP™, m > 2, such that A%k is pure with

respect to ¢, for any nonnull real number k.

Also from Theorem 2.2 we have a similar non-existence result for real hypersurfaces in CP™, m > 2,
for which A%C) is hybrid with respect to ¢, for any nonnull real number k.

For Agc ) we obtain the following result
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Theorem 2.6 ([11]). There does not exist any real hypersurface in CP™, m > 3, such that Ag@ is n-pure
with respect to ¢, for any nonnull real number k.

If we suppose now that A(Tlf) is p-hybrid with respect to ¢, we have

(2.3)  g(PAX, AY)E = n(AY)pASX — g(A?Y, X)E — kn(AY)X + g(pAX, ApY )¢
— n(AQY)pAX — g(pA%QY, X )& — kn(AdY )pX =0,
for any X, Y € D. If M is Hopf with Reeb curvature « the scalar product of (2.3) and ¢ yields

ApAPX — A2X — pAPAX — pA%¢pX = 0, for any X € D. Taking X € D such that AX = AX, we obtain
A2 = p2 If A+ =0 we get 202 + 2 = 0, which is impossible. Therefore A = p and ¢pA = Ag.

If M is non Hopf we write again A( = af + SU, with the same conditions as in the previous proof.
Then the scalar product of (2.3) and ¢U, taking Y = ¢U yields AU = 8¢ + kU. And the corresponding
scalar product of (2.3) with U, gives ApU = k¢U. Both expressions allow us to assume that Dy is
A-invariant.

Then the scalar product of (2.3) and Z € Dy implies that for any Z € Dy, AZ = kZ. If we apply
Codazzi equation to Z € Dy and ¢Z we obtain k5 = 0, which is impossible and proves

Theorem 2.7. Let M be a real hypersurface in CP™, m > 3, and k a nonnull real number. Then Agc)

is n-hybrid with respect to ¢ if and only if M is locally congruent to a real hypersurface of type (A).

As in the previous section from Theorem 2.7 it is easy to prove non-existence of real hypersurfaces in
CP™, m > 3, such that Agpk ) is hybrid with respect to ¢, for any nonnull real number k.

3. PURITY AND HYBRIDNESS OF A%k) AND Agf“) WITH RESPECT TO A
The following results appear in [12].

Theorem 3.1. There does not exist any real hypersurface M in CP™, m > 3, such that Agc) 18 pure
with respect to A, for any nonnull real number k.

)

If we suppose that A%c is p-hybrid with respect to A we have

(3.1) g(pA’X, AY)E — n(AY)PA’X — kn(AX)pAY — g(pA*X,Y)AE + kn(AX)AgY
+9(pAX, A’Y)E — n(A’Y)pAX — g(pAX, AY) AE + n(AY)APAX =0,

for any X,Y € D. If M is Hopf with Reeb curvature a (3.1) yields ApA? X —apA? X +A2pAX —aApAX =
0, for any X € D, and if we suppose that X € D satisfies AX = AX we obtain (u — a)A\(A + u) = 0. As
before A 4+ p does not vanish. Then, either A = 0 and in this case y = f% (recall that 2\ — « # 0) or
p=aand A\ = % Then M has at most 3 distinct principal curvatures. Looking at Takagi’s list, both
cases are impossible and M must be non Hopf.

Write again A = a€ + BU. The scalar product of (3.1) and ¢U, for several choices of X and Y in Dy,
implies AU = ¢ 4+ ~U, for a certain function v and A¢pU = §¢U, for a function §. The scalar product of
(3.1) and U gives either § = 0 or § = — (242). We also know that Dy is A-invariant. From (3.1), if we
suppose that X € Dy satisfies AX = AX we obtain that either A =0 or ApX = —A\¢X. But the scalar
product of (3.1) and Z € Dy yields AZ = 0, for any Z € Dy. Then the Codazzi equation applied to Z
and ¢Z, Z € Dy implies v = 0. Now, if we suppose that § = —5 # 0, the scalar product of (3.1) and &
gives a? + 4% = 0, which is impossible. Thus we have § = 0 and prove the

Theorem 3.2. Let M be a real hypersurface in CP™, m > 3, and k a nonnull real number. Then A%C)
18 m-hybrid with respect to A if and only if M is locally congruent to a ruled real hypersurface.
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Now, from Theorem 3.2 we can obtain the

Corollary 3.3. There does not exist any real hypersurface M in CP™, m > 3, such that Agf) is hybrid
with respect to A, for any nonnull real number k.

In the case of Agc ) we can prove, in a similar but much more complicated way the following

Theorem 3.4. Let M be a real hypersurface in CP™, m > 3, and k a nonnull real number. Then Agv)
s pure with respect to A if and only if M is locally congruent to a geodesic hypersphere of radius r,
0 <7 <%, such that cot(2r) = %
If now we suppose that A¥ ) is n-hybrid with respect to A we have
(3:2) g(pA’X, AY)E — n(AY)PA’X — kn(AX)pAY — g(¢A%Y, AX)E +1(AX)pA*Y
+ En(AY)pAX — g(pA?X,Y)AE + kn(AX)AQY + g(¢AY, AX)AE — n(AX)ApAY
+g(PAX, APY)E — n(APY)AX — g(pA®Y, X)E + kn(APY )9 X — g(pAX, AY) A¢
+n(AY)ApAX + g(pA?Y, X)AE — kn(AY)ApX = 0,
for any X,Y € D. Let us suppose that M is Hopf with Reeb curvature a. From (3.2) we get
APA?X + 2A%20AX — apA?X — 20ApAX + A2pX — aA?¢pX = 0, for any X € D. If we take X € D
such that AX = AX, (A + p)?(p — @) = 0. As above u = a, A = %, M has two distinct constant

principal curvatures and should be locally congruent to a geodesic hypersphere, [2]. In such a case either

2cot(2r) = cot(r) or 2cot(2r) = —tan(r), for 0 < r < 7, which is impossible. Thus M must be non

Hopf and we continue writing A§ = af + BU. Taking X =Y = ¢U in (3.2) and its scalar product
with ¢U we get g(AU, ¢U) = 0 and a similar argument with X =Y € Dy yields g(AU, X) = 0, for any
X € Dy. Thus, for a certain function v, AU = 8¢ + yU. An analogous argument for X =Y = U gives

(k=) (a+7)=0.

Taking the scalar product of (3.2) and U and several choices for X and ¥ we obtain
(a+7)9(AoU, X) =0,
29(AgU, 9AX) + g(AgU, ApX) = 0,
2kg(ApU, X) + g(ApU, AX) = 0,
(k= 7)g(AgU, X) — 29(AdU, AX) = 0,

for any X € Dy. If v = k, this equations yield g(A¢U, X) = 0 for any X € Dy, showing that in this case
ApU = d¢U, for a certain function 6.

(3.3)

But for X = U, Y = ¢U, the scalar product of (3.2) and U implies 2§% + 272 + 3% = 0, which is
impossible. Thus a + v = 0 and a similar reasoning gives 2y + o« — 5k = 0. This yields v = 5k, a = =5k,
and there exists Z € Dy such that g(A¢U, Z) = 0. Taking X = ¢U in (3.2) and its scalar product with
Z € Dy we have 2kg(A¢U, X) —3g(A¢pU, AX) = 0 for any X € Dy. This and (3.3) yields g(A¢U, X) =0
for any X € Dy, a contradiction that proves

Theorem 3.5. There does not exists any real hypersurface M in CP™, m > 3, such that Ag?) s n-hybrid
with respect to A, for any nonnull real number k.
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