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1. Introduction

We will denote by CPm the complex projective space with complex dimension m ≥ 2 equipped with
the Kählerian structure (J, g), where g is the Fubini-Study metric with constant holomorphic sectional
curvature 4. Consider a connected real hypersurface M in CPm with local unit normal vector field N
and define the structure (or Reeb) vector field on M by ξ = −JN . If for any vector field X tangent to
M we write JX = ϕX + η(X)N , where ϕX denotes the tangential component of JX, ϕ is a tensor of
type (1, 1) on M called the structure operator of M and the 1-form η is given by η(X) = g(X, ξ), for
any X tangent to M . We continue denoting by g the restriction of the metric on CPm to M . Then
(ϕ, ξ, η, g) is an almost contact metric structure on M . Therefore ϕξ = 0, η(ξ) = 1, ϕ2X = −X + η(X)ξ
and g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), for any X,Y tangent to M , [1].

Denote by ∇ the Levi-Civita connection on M and by A the shape operator on M associated to N .
As J is parallel with respect to the Levi-Civita connection ∇̄ on CPm, we get

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = ϕAX,

for any X,Y tangent to M . The Codazzi equation is given by

(∇XA)Y − (∇Y A)X = η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ,

for any X,Y tangent to M .

M is called Hopf if ξ is an eigenvector of A. That is, Aξ = αξ for a certain function α on M , called the
Reeb curvature of M . The maximal holomorphic distribution D on M is given by D(p) = {X ∈ TpM/
g(X, ξ) = 0}, for any p ∈ M . Takagi, [14], [15], classified homogeneous real hypersurfaces of CPm in 6
types. Kimura, [5], proved that such types are the unique Hopf real hypersurfaces in CPm with constant
principal curvatures. We mention the following types in Takagi’s list:

(A1): Geodesic hyperspheres of radius r, 0 < r < π
2 . They are the unique real hypersurfaces in

CPm with 2 distinct principal curvatures, [2].
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(A2): Tubes of radius r, 0 < r < π
2 , around totally geodesic complex projective spaces CPn,

0 < n < m− 1. They have 3 distinct constant principal curvatures.

Okumura, [9], proved that both types, that we will call type (A) real hypersurfaces, are the unique
ones in CPm satisfying Aϕ = ϕA.

As examples of non Hopf real hypersurfaces in CPm we can mention ruled real hypersurfaces, in-
troduced by Kimura, [6], as real hypersurfaces such that D is integrable and have CPm−1 as integral
manifolds. Equivalently g(AD,D) = 0. For examples, see [6] and [7].

The Tanaka-Webster connection is the canonical affine connection defined on a non-degenerate, pseudo-
Hermitian CR-manifold independently by Tanaka, [16], and Webster, [18]. Tanno [17] generalized such
a connection for contact metric manifolds and from this generalization, for any nonnull real number k,
Cho, [3], [4], defined the k-th generalized Tanaka-Webster connection on a real hypersurface M of CPm

by

∇̂(k)
X Y = ∇XY + g(ϕAX, Y )ξ − η(Y )ϕAX − kη(X)ϕY,

for any X,Y tangent to M . This is a metric connection, ∇̂(k)g = 0, and also ∇̂(k)ϕ = 0, ∇̂(k)ξ = 0 and
∇̂(k)η = 0. In the particular case of ϕA + Aϕ = 2kϕ, M is a contact manifold and ∇̂(k) coincides with
the Tanaka-Webster connection.

The k-th Cho operator associated toX, tangent toM , is defined by F
(k)
X Y = g(ϕAX, Y )ξ−η(Y )ϕAX−

kη(X)ϕY , for any Y tangent to M . Then the torsion of ∇̂(k) is T (k)(X,Y ) = F
(k)
X Y − F

(k)
Y X. Notice

that if X ∈ D, F (k)
X does not depend on k and we will denote it simply by FX .

We will also call the k-th torsion operator associated to the vector field X tangent to M to

T
(k)
X Y = T (k)(X,Y ), for any Y tangent to M .

Let L be the Lie derivative on M . We know that for any X,Y tangent to M , LXY = ∇XY −∇Y X.
This expression allows us to define a differential operator of first order on M , that we will call the

derivative of Lie type associated to ∇̂(k) and is given by L(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T

(k)
X Y for

any X,Y tangent to M .

Let B be a symmetric operator on M . We will consider the tensor field of type (1, 2) on M given by

B
(k)
F (X,Y ) = ((∇̂(k)

X −∇X)B)Y = [F
(k)
X , B]Y = F

(k)
X BY −BF

(k)
X Y for any X,Y tangent to M .

We also can consider a second tensor field of type (1, 2) onM given byB
(k)
T (X,Y ) = ((L(k)

X −LX)B)Y =

[T
(k)
X , B]Y = T

(k)
X BY −BT

(k)
X Y , for any X,Y tangent to M .

Let Θ be another operator on M and Q a tensor of type (1, 2) on M . Tachibana, [13], introduced
the notion of Q being pure with respect to Θ if Q(ΘX,Y ) = Q(X,ΘY ) for any X,Y ∈ TM . In the
case of the same equality for any X,Y ∈ D, we will say that Q is η-pure with respect to Θ. Tachibana
also gave the following definition: Q is hybrid with respect to Θ if Q(ΘX,Y ) = −Q(X,ΘY ) for any
X,Y ∈ TM . If this equality is satisfied for any X,Y ∈ D we will say that Q is η-hybrid with respect to Θ.

In [10] we presented some generalizations of the conditions A
(k)
F ≡ 0, A

(k)
T ≡ 0. Now we will study

purity (η-purity) and hybridness (η-hybridness) of such tensors with respect to either ϕ or A.
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2. Purity and hybridness of A
(k)
F and A

(k)
T with respect to ϕ

Suppose that m ≥ 2 and A
(k)
F is η-pure with respect to ϕ. Then we have

(2.1) g(ϕAϕX,AY )− η(AY )ϕAϕX − g(ϕAϕX, Y )Aξ

= g(ϕAX,AϕY )ξ − η(AϕY )ϕAX − g(AX,Y )Aξ,

for any X,Y ∈ D.

If we suppose that M is Hopf with Reeb curvature α, we know, [8], that α is constant and if X ∈ D
satisfies AX = λX, then 2λ−α ̸= 0 and AϕX = µϕX, with µ = αλ+2

2λ−α . Then the scalar product of (2.1)
and ξ gives AϕAϕX − αϕAϕX = −ϕAϕAX − αϕAX, for any X ∈ D. If X ∈ D satisfies AX = λX, we
get 2λµ = α(µ + λ). From the value of µ this yields αλ2 + 2λ = αλ2 + α. Then λ = α

2 . This implies

αλ = α2

2 = 0 and therefore, α = λ = 0, a contradiction, as 2λ− α ̸= 0.
If M is non Hopf we can write Aξ = αξ + βU , where U is a unit vector field in D and α, β are functions
with β ̸= 0, at least on a neighbourhood of a point p ∈ M . Call DU = {X ∈ D/g(X,U) = g(X,ϕU) = 0}.
Taking the scalar product of (2.1) and either ϕU or U or Z ∈ DU we obtain either AU = βξ, AϕU = 0,
AZ = 0, for any Z ∈ DU . Therefore we get

Theorem 2.1 ([11]). Let M be a real hypersurface in CPm, m ≥ 2. Then A
(k)
F is η-pure with respect to

ϕ if and only if M is locally congruent to a ruled real hypersurface.

A similar proof for the case of A
(k)
F being η-hybrid yields

Theorem 2.2 ([11]). Let M be a real hypersurface in CPm, m ≥ 2, and k a nonnull real number.

Then A
(k)
F is η-hybrid with respect to ϕ if and only if M is locally congruent to one of the following real

hypersurfaces:

• a tube of radius π
4 around a complex submanifold of CPm,

• a real hypersurface of type (A),
• a ruled real hypersurface.

Remark 2.3. First case in Theorem 2.2 corresponds to Hopf real hypersurfaces with Reeb curvature
equal to 0, see [2].

Remark 2.4. If we suppose that A
(k)
F is pure with respect to ϕ we should have

(2.2) g(ϕAϕX,AY )ξ − η(AY )ϕAϕX − g(ϕAϕX, Y )Aξ + η(Y )AϕAϕX = g(ϕAX,AϕY )ξ

− η(AϕY )ϕAX − kη(X)ϕAϕY − g(ϕAX, ϕY )Aξ + kη(X)Aϕ2Y,

for any X,Y tangent to M . From Theorem 2.1 we have that, in particular, M must be locally congruent
to either a real hypersurface of type (A) or to a ruled one. In the first case, bearing in mind that Aϕ = ϕA
and taking X ∈ D, Y = ξ in D we arrive to a contradiction. Moreover, if M is ruled and we take X = ξ,
Y = U in (2.2) we should have −βAξ − kAU = 0. Its scalar product with U yields β2 = 0, which is
impossible. Therefore,

Corollary 2.5. There does not exist any real hypersurface in CPm, m ≥ 2, such that A
(k)
F is pure with

respect to ϕ, for any nonnull real number k.

Also from Theorem 2.2 we have a similar non-existence result for real hypersurfaces in CPm, m ≥ 2,

for which A
(k)
F is hybrid with respect to ϕ, for any nonnull real number k.

For A
(k)
T we obtain the following result
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Theorem 2.6 ([11]). There does not exist any real hypersurface in CPm, m ≥ 3, such that A
(k)
T is η-pure

with respect to ϕ, for any nonnull real number k.

If we suppose now that A
(k)
T is η-hybrid with respect to ϕ, we have

(2.3) g(ϕAX,AY )ξ − η(AY )ϕAϕX − g(A2Y,X)ξ − kη(AY )X + g(ϕAX,AϕY )ξ

− η(AϕY )ϕAX − g(ϕA2ϕY,X)ξ − kη(AϕY )ϕX = 0,

for any X,Y ∈ D. If M is Hopf with Reeb curvature α the scalar product of (2.3) and ξ yields
AϕAϕX −A2X −ϕAϕAX −ϕA2ϕX = 0, for any X ∈ D. Taking X ∈ D such that AX = λX, we obtain
λ2 = µ2. If λ+ µ = 0 we get 2λ2 + 2 = 0, which is impossible. Therefore λ = µ and ϕA = Aϕ.

If M is non Hopf we write again Aξ = αξ + βU , with the same conditions as in the previous proof.
Then the scalar product of (2.3) and ϕU , taking Y = ϕU yields AU = βξ + kU . And the corresponding
scalar product of (2.3) with U , gives AϕU = kϕU . Both expressions allow us to assume that DU is
A-invariant.

Then the scalar product of (2.3) and Z ∈ DU implies that for any Z ∈ DU , AZ = kZ. If we apply
Codazzi equation to Z ∈ DU and ϕZ we obtain kβ = 0, which is impossible and proves

Theorem 2.7. Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real number. Then A
(k)
T

is η-hybrid with respect to ϕ if and only if M is locally congruent to a real hypersurface of type (A).

As in the previous section from Theorem 2.7 it is easy to prove non-existence of real hypersurfaces in

CPm, m ≥ 3, such that A
(k)
T is hybrid with respect to ϕ, for any nonnull real number k.

3. Purity and hybridness of A
(k)
F and A

(k)
T with respect to A

The following results appear in [12].

Theorem 3.1. There does not exist any real hypersurface M in CPm, m ≥ 3, such that A
(k)
F is pure

with respect to A, for any nonnull real number k.

If we suppose that A
(k)
F is η-hybrid with respect to A we have

(3.1) g(ϕA2X,AY )ξ − η(AY )ϕA2X − kη(AX)ϕAY − g(ϕA2X,Y )Aξ + kη(AX)AϕY

+ g(ϕAX,A2Y )ξ − η(A2Y )ϕAX − g(ϕAX,AY )Aξ + η(AY )AϕAX = 0,

for anyX,Y ∈ D. IfM is Hopf with Reeb curvature α (3.1) yields AϕA2X−αϕA2X+A2ϕAX−αAϕAX =
0, for any X ∈ D, and if we suppose that X ∈ D satisfies AX = λX we obtain (µ− α)λ(λ+ µ) = 0. As
before λ + µ does not vanish. Then, either λ = 0 and in this case µ = − 2

α (recall that 2λ − α ̸= 0) or

µ = α and λ = α2+2
α . Then M has at most 3 distinct principal curvatures. Looking at Takagi’s list, both

cases are impossible and M must be non Hopf.

Write again Aξ = αξ+βU . The scalar product of (3.1) and ϕU , for several choices of X and Y in DU ,
implies AU = βξ+ γU , for a certain function γ and AϕU = δϕU , for a function δ. The scalar product of
(3.1) and U gives either δ = 0 or δ = −

(
α+γ
2

)
. We also know that DU is A-invariant. From (3.1), if we

suppose that X ∈ DU satisfies AX = λX we obtain that either λ = 0 or AϕX = −λϕX. But the scalar
product of (3.1) and Z ∈ DU yields AZ = 0, for any Z ∈ DU . Then the Codazzi equation applied to Z
and ϕZ, Z ∈ DU implies γ = 0. Now, if we suppose that δ = −α

2 ̸= 0, the scalar product of (3.1) and ξ

gives α2 + 4β2 = 0, which is impossible. Thus we have δ = 0 and prove the

Theorem 3.2. Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real number. Then A
(k)
F

is η-hybrid with respect to A if and only if M is locally congruent to a ruled real hypersurface.
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Now, from Theorem 3.2 we can obtain the

Corollary 3.3. There does not exist any real hypersurface M in CPm, m ≥ 3, such that A
(k)
F is hybrid

with respect to A, for any nonnull real number k.

In the case of A
(k)
T we can prove, in a similar but much more complicated way the following

Theorem 3.4. Let M be a real hypersurface in CPm, m ≥ 3, and k a nonnull real number. Then A
(k)
T

is pure with respect to A if and only if M is locally congruent to a geodesic hypersphere of radius r,

0 < r < π
2 , such that cot(2r) = k2−1

2k .

If now we suppose that A
(k)
T is η-hybrid with respect to A we have

(3.2) g(ϕA2X,AY )ξ − η(AY )ϕA2X − kη(AX)ϕAY − g(ϕA2Y,AX)ξ + η(AX)ϕA2Y

+ kη(AY )ϕAX − g(ϕA2X,Y )Aξ + kη(AX)AϕY + g(ϕAY,AX)Aξ − η(AX)AϕAY

+ g(ϕAX,A2Y )ξ − η(A2Y )ϕAX − g(ϕA3Y,X)ξ + kη(A2Y )ϕX − g(ϕAX,AY )Aξ

+ η(AY )AϕAX + g(ϕA2Y,X)Aξ − kη(AY )AϕX = 0,

for any X,Y ∈ D. Let us suppose that M is Hopf with Reeb curvature α. From (3.2) we get
AϕA2X + 2A2ϕAX − αϕA2X − 2αAϕAX + A3ϕX − αA2ϕX = 0, for any X ∈ D. If we take X ∈ D
such that AX = λX, (λ + µ)2(µ − α) = 0. As above µ = α, λ = α2+2

α , M has two distinct constant
principal curvatures and should be locally congruent to a geodesic hypersphere, [2]. In such a case either
2 cot(2r) = cot(r) or 2 cot(2r) = − tan(r), for 0 < r < π

2 , which is impossible. Thus M must be non
Hopf and we continue writing Aξ = αξ + βU . Taking X = Y = ϕU in (3.2) and its scalar product
with ϕU we get g(AU, ϕU) = 0 and a similar argument with X = Y ∈ DU yields g(AU,X) = 0, for any
X ∈ DU . Thus, for a certain function γ, AU = βξ + γU . An analogous argument for X = Y = U gives
(k − γ)(α+ γ) = 0.

Taking the scalar product of (3.2) and U and several choices for X and Y we obtain

(α+ γ)g(AϕU,X) = 0,

2g(AϕU, ϕAX) + g(AϕU,AϕX) = 0,

2kg(AϕU,X) + g(AϕU,AX) = 0,

(k − γ)g(AϕU,X)− 2g(AϕU,AX) = 0,

(3.3)

for any X ∈ DU . If γ = k, this equations yield g(AϕU,X) = 0 for any X ∈ DU , showing that in this case
AϕU = δϕU , for a certain function δ.

But for X = U , Y = ϕU , the scalar product of (3.2) and U implies 2δ2 + 2γ2 + β2 = 0, which is
impossible. Thus α+ γ = 0 and a similar reasoning gives 2γ +α− 5k = 0. This yields γ = 5k, α = −5k,
and there exists Z ∈ DU such that g(AϕU,Z) = 0. Taking X = ϕU in (3.2) and its scalar product with
Z ∈ DU we have 2kg(AϕU,X)−3g(AϕU,AX) = 0 for any X ∈ DU . This and (3.3) yields g(AϕU,X) = 0
for any X ∈ DU , a contradiction that proves

Theorem 3.5. There does not exists any real hypersurface M in CPm, m ≥ 3, such that A
(k)
T is η-hybrid

with respect to A, for any nonnull real number k.
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