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the flow by powers of the Gauss curvature. This classification is also extended to Lorentz-
Minkowski 3−space.
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1. Introduction

Let X : Σ → R3 be a smooth immersion of a strictly convex surface Σ in R3. The Kα-flow, α ∈ R−{0},
is a one-parameter family of smooth immersions X(·, t) : Σ → R3, t ∈ [0, T ), X0 = X, such that

∂X

∂t
(p, t) = −Kα(p, t)N(p, t), (p, t) ∈ Σ× [0, T ),

where N(p, t) is the unit normal and K(p, t) is the Gauss curvature at X(p, t). The origin of this theory
lies in the work of Firey [12]. See also [11, 20]. With regard to geometric analysis, it is of interest, see
for example [1, 3, 21].

As particular solutions of Kα-flow, it is a mainstream to seek self-similar solutions, especially ho-
mothetic solutions (the surface moves by homothety) and translating solutions (the surface moves by
translation). We will be interested in translating solutions of Kα-flow, which we call Kα-translators (see
[10, 18, 22]).

Let v⃗ ∈ R3 be a fixed unit vector, called the speed of the flow. We call a surface Σ a translator by
Kα-flow with speed v⃗ if, up to a dilation of R3,

(1.1) Kα = ⟨N, v⃗⟩.

The particular case α = 1/4 in equation (1.1) plays a key role due to that not only the interpretation in
affine differential geometry (see [2, 8]) but also it is greatly simplified by a cancellation of terms comparing
to the other values of α.

Our purpose is to give examples of Kα-translators. We will neglect those trivial examples of Kα-
translators when the Gauss curvature K in equation (1.1) is constant on the surface. Because otherwise
equation (1.1) describes a well-known class of surfaces in differential geometry, constant angle surfaces
[9, 19].

In the case v⃗ = (0, 0, 1), equation (1.1) writes in nonparametric way u = u(x, y) as

(1.2)

(
detD2u

(1 + |Du|2)2

)α

=
1√

1 + |Du|2
.
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If α = 1/4 in (1.2), this equation is the Monge-Ampère equation detD2u = 1 [14]. For any α (even if
α = 1/4), equation (1.2) is difficult to solve its generality in all. Hence, it is reasonable to assume some
type symmetries on the surface where equation (1.1) (or (1.2)) converts into an ODE. In this paper we
will assume that the surface is invariant under a uniparametric group of rotations.

When the ambient is the Lorentz-Minkowski space R3
1, equation (1.1) is still valid with the difference

that the surface Σ is assumed to be spacelike and of positive Gauss curvature [4, 13, 17]. The Kα-
translators in R3

1 can be employed as barriers in order to obtain C1 and C2 apriori estimates in the
Dirichlet problem associated to the equation (1.1), such as it occurs for the prescribing Gauss curvature
equation K = ct [7, 15, 16].

In this talk, presented at the The International Conference Riemannian Geometry and Applica-
tions–RIGA 2023, we will recall (without proofs) the results we obtained on rotational Kα-translators.
We classify rotational Kα-translators in Euclidean space R3. This classification is also extended to
Lorentz-Minkowski space R3

1. In R3
1, the family of surfaces of revolution is greater than of Euclidean case.

According to the causal character of the rotation axis, three types of surfaces appear. In addition, the
speed v⃗ has again three possible causal choices.

The proofs are included in the papers [5, 6].

2. Rotational Kα-translators in Euclidean setting

Let Σ be a surface of revolution in Euclidean space R3 with rotation axis L. After a rigid motion, we
may assume that L is the z-axis. Then, a parametrization of Σ writes as

(2.1) X(r, θ) = (r cos θ, r sin θ, f(r)),

where f : I → R, I ⊂ R+, is a C2-function.
Assume now that Σ is a Kα-translator with speed v⃗. A natural question is if there is a relation between

v⃗ and the rotation axis. By [5, Proposition 1], as expectable, we understand that v⃗ must be parallel to
the z-axis. Hence, it follows v⃗ = (0, 0, 1) after a symmetry about the xy-plane if necessary.

The following result completely classifies rotational Kα-translators.

Theorem 2.1. [5] Let Σ be a Kα-translator. If Σ is a surface of revolution about the z-axis, then Σ is
a circular cylinder of arbitrary radius or Σ parametrizes as (2.1) where

(2.2) f(r) =


±
∫ r

(
1
met

2 − 1
)1/2

dt,m > 0, α = 1
2

±
∫ r

((
m− 2α−1

2α t2
) 2α

1−2α − 1
)1/2

dt,m ∈ R, α ̸= 1
2 .

Furthermore, the maximal domain of the function f(r) is

(1) [
√
logm,∞), if α = 1/2.

(2) [
√

2α
2α−1m,∞), if α ∈ (0, 1/2).

(3) [
√

2α
2α−1 (m− 1),

√
2α

2α−1m), if α ̸∈ [0, 1/2]. In this case, we have

lim
r→

√
2α

2α−1 (m−1)

f ′(r) = 0, lim
r→

√
2α

2α−1m

f(r) = ∞.

In all these cases, we understand that if in the radicand in the left-end of the interval is negative, then
the value of this end is 0.

As addressed in Sect. 1, the particular value α = 1/4 is special and one can explicitly obtain the
solutions of equation (2.2).

Corollary 2.2. [5] Rotational K1/4-translators form a uniparametric family of surfaces parametrized by
(2.1), where

f(r) =
1

2

(
r
√
m+ r2 − 1 + (m− 1) log

(√
m+ r2 − 1 + r

))
+ c, m, c ∈ R.
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The maximal domain of f is [
√
1−m,∞) if m < 1 and [0,∞) if m ≥ 1. For the value m = 1, f is the

parabola f(r) = r2/2, the graphic of f(r) orthogonally intersects the rotation axis and Σ is a paraboloid.

In what follows, we study the situation that the generating curves of Kα-translators meet the rotation
axis at a right angle independently from the the value of α.

Corollary 2.3. [5] For each α, there are rotational Kα-translators whose generating curves intersect
orthogonally the rotation axis. These surfaces are unique up to vertical translations. Furthermore,

(1) If α ∈ (0, 1
2 ], the maximal domain of f is [0,∞), limr→∞ f(r) = ∞ and

f(r) = (1− 2α)

(
1− 2α

2α

) α
1−2α

r
1

1−2α + o(r
1

1−2α ).

(2) If α ̸∈ [0, 1
2 ], the maximal domain is [0,

√
2α

2α−1 ), with

lim
r→

√
2α

2α−1

f(r) = ∞.

As we will see later, this result cannot be extended in the Lorentzian setting.

3. Rotational Kα-translators in Lorentzian setting

In this section, we first describe the parametrizations of the surfaces of revolution of R3
1. As pointed

out in Sect. 1, there are three types of surfaces of revolution depending on the causal character of the
rotation axis L.

Let B = {e1, e2, e3} = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} be the usual basis of R3. After a rigid motion, we
can assume that L = sp{e3} (timelike), L = sp{e1} (spacelike) or L = sp{e2 + e3} (lightlike).

(1) The axis is timelike, L = sp{e3}. The generating curve is r 7→ (r, 0, f(r)), r > 0, where f is a
smooth function and the parametrization of the surface is

(3.1) X(r, θ) = (r cos θ, r sin θ, f(r)).

The surface is spacelike (resp. timelike) if f ′2 < 1 (resp. f ′2 > 1).
(2) The axis is spacelike, L = sp{e1}. The generating curve can be included in the xz-plane or in

the xy-plane. In the first case, if the curve is r 7→ (f(r), 0, r) r > 0, the parametrization of the
surface is

(3.2) X(r, θ) = (f(r), r sinh θ, r cosh θ).

The surface is spacelike (resp. timelike) if f ′2 > 1 (resp. f ′2 < 1). If the generating curve is
included in the xy−plane and if r 7→ (f(r), r, 0), r > 0, the parametrization of the surface is

X(r, θ) = (f(r), r cosh θ, r sinh θ).

The surface is always timelike.
(3) The axis is lightlike, L = sp{e2 + e3}. The generating curve is r 7→ (0, f(r) + r, f(r)− r), r > 0,

and the surface is

(3.3) X(r, t) = (2rt, f(r) + r − rt2, f(r)− r − rt2).

The surface is spacelike (resp. timelike) if f ′ > 0 (resp. f ′ < 0).

Let Σ be a rotational Kα-translator in R3
1 with speed v⃗. As in the Euclidean case, the vector v⃗ must

be parallel to the rotation axis L independently from the causal character of L. See [6, Propositions 3.1,
3.6, 3.10].
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3.1. The axis is timelike. The first result classifies all rotational Kα-translators with timelike axis,
distinguishing the case that α = 1/4.

Theorem 3.1. [6] Any rotational Kα-translator with timelike axis is parametrized as (2.1), where

f(r) =


±
∫ r

(
1− 1

m2 e
t2
)1/2

dt,m > 1, α = 1
2

±
∫ r

(
1−

(
m− 2α−1

2α t2
) 2α

1−2α

)1/2

dt,m ∈ R, α ̸= 1
2 .

The maximal domain of the above function f(r) is:

(1) Case α = 1/2: (0,
√
logm2), where m > 1.

(2) Case α ∈ (0, 1/2): (
√

2α
2α−1m,

√
2α

1−2α (1−m)) if m < 0 or (0,
√

2α
1−2α (1−m)) if 0 ≤ m < 1.

(3) Case α ̸∈ [0, 1/2]: (0,
√

2α
2α−1 (m− 1)) and m > 1.

Corollary 3.2. [6] Rotational K1/4-translators with timelike axis parametrize as (3.1), where

f(r) = ±1

2

(
r
√
1−m− r2 − (m− 1) tan−1

(
r√

1−m− r2

))
,

where r ∈ (0,
√
1−m) and m < 1.

As in Sect. 2, we investigate the situation that the generating curve intersects the rotation axis. This
means that the generating curve r 7→ (r, 0, f(r)) is defined at the limit at r = 0. In the following, if
the rotation axis is timelike, we will see that Corollary 2.3 is now invalid. Furthermore, we notice the
existence of a different important behaviour.

Corollary 3.3. [6] There are no rotational Kα-translators with timelike axis intersecting orthogonally
the rotation axis. On the other hand, if α ∈ (0, 1/2), there are rotational Kα-translators with timelike
axis intersecting the rotation axis at a conical point.

3.2. The axis is spacelike. We first recall the classification results.

Theorem 3.4. [6] Any rotational Kα-translator with spacelike axis is parametrized as (3.2), where

f(r) =


±
∫ r

(
1 + 1

m2 e
−t2

)1/2

dt,m > 0, α = 1
2

±
∫ r

(
1 +

(
m+ 2α−1

2α t2
) 2α

1−2α

)1/2

dt,m ∈ R, α ̸= 1
2 .

The maximal domain of the above function f(r) is:

(1) Case α = 1/2. The domain is (0,∞).

(2) Case α ∈ (0, 1/2). The domain is (0,
√

2α
1−2αm), where m > 0.

(3) Case α ̸∈ [0, 1/2]. The domain is (0,∞) if m ≥ 0 or (
√

2α
1−2αm,∞) if m < 0.

Corollary 3.5. [6] Rotational K1/4-translators with spacelike axis parametrize as (3.2), where

f(r) = ±1

2

(
r
√
1 +m− r2 + (1 +m) tan−1

(
r√

1 +m− r2

))
,

where r ∈ (0,
√
1 +m) and m > −1.

The following results differs of Corollary 2.3.

Corollary 3.6. [6] There are no rotational Kα-translators with spacelike axis and intersecting orthogo-
nally the rotation axis.
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3.3. The axis is lightlike.

Theorem 3.7. [6] Any rotational Kα-translator with lightlike axis is parametrized as (3.3), where

f(r) =

 m
∫ r

e4t
2

dt,m > 0, α = 1
2∫ r

(
2(1−2α)

α t2 +m
) 2α

1−2α

dt,m ∈ R, α ̸= 1
2 .

The maximal domain of the above function f(r) is:

(1) Case α = 1/2. The domain is (0,∞).

(2) Case α ∈ (0, 1/2). The domain is (0,∞) if m ≥ 0 or (
√

α
2(2α−1)m,∞) if m < 0.

(3) Case α ̸∈ [0, 1/2]. The domain is (0,
√

α
2(2α−1)m) where m > 0.

Corollary 3.8. [6] Rotational K1/4-translators with lightlike axis parametrize as (3.3), where

f(r) =
4

3
r3 +mr,

where r ∈ (0,∞) if m > 0 and r ∈ (
√
−m/2,∞) otherwise.

References

[1] B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differ. Eq.
2 (1994), 151-171.

[2] B. Andrews, Contraction of convex hypersurfaces by their affine normal, J. Differential Geom. 43
(1996), 207-230.

[3] B. Andrews, Gauss curvature flow: the fate of the rolling stones, Invent. Math. 138 (1999), 151-161.
[4] B. Andrews, X. Chen, H. Fang and J. McCoy, Expansion of co-compact convex spacelike hypersurfaces

in Minkowski space by their curvature, Indiana Univ. Math. J. 64(2) (2015), 635–662.
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