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Abstract. We determine certain properties of isometrically immersed Ricci and hyper-
bolic Ricci solitons into Kenmotsu and Sasakian manifolds having as potential vector field
the tangential component ξ⊤ of the Reeb vector field ξ. We prove that a ξ⊥-umbilical
submanifold of a Kenmotsu manifold is a Ricci or a hyperbolic Ricci soliton if and only
if it is a quasi-Einstein manifold, and a ξ⊥-umbilical submanifold of a Sasakian manifold
is a Ricci or a hyperbolic Ricci soliton if and only if it is an Einstein manifold. We also
characterize the Ricci soliton submanifolds of a Kenmotsu and of a Sasakian manifold
with Codazzi Ricci operator in terms of the second fundamental form. Finally, we deduce
that all the results obtained for the Sasakian case hold true for the cosymplectic case,
too.

Mathematics Subject Classification (2010): 53C15, 53C05, 53C38
Key words: Ricci soliton, hyperbolic Ricci soliton, submanifold.

Article history:
Received: October 15, 2023
Received in revised form: October 30, 2023
Accepted: October 31, 2023

1. Preliminaries

Ricci solitons as submanifolds of a Riemannian manifold have been extensively treated by B.-Y. Chen
in [9], completing the results from [11] for the case when the potential vector field is the tangential
component of a concircular vector field on the ambient manifold. If the vector field is torse-forming,
η-Ricci and η-Yamabe soliton submanifolds have been considered in [3], η-Ricci–Bourguignon soliton
submanifolds in [5], Riemann soliton submanifolds in [4], hyperbolic Ricci soliton submanifolds in [6] and
hyperbolic Yamabe soliton submanifolds with potential vector fields arising from a concurrent vector field,
in [7]. In almost contact metric geometry, some results on Ricci solitons on invariant and anti-invariant
submanifolds of a Kenmotsu manifold with respect to a quarter symmetric metric connection and quarter
symmetric non-metric ϕ-connection can be found in [14].

In the present paper, we study some properties of Ricci and hyperbolic Ricci soliton submanifolds
of a Kenmotsu and of a Sasakian manifold, whose potential vector field is the tangential component
ξ⊤ of the Reeb vector field ξ. We show that a ξ⊥-umbilical submanifold of a Kenmotsu manifold is
a Ricci or a hyperbolic Ricci soliton if and only if it is a quasi-Einstein manifold, and a ξ⊥-umbilical
submanifold of a Sasakian manifold is a Ricci or a hyperbolic Ricci soliton if and only if it is an Einstein
manifold. We also describe the Ricci soliton submanifolds of a Kenmotsu or of a Sasakian manifold with
Codazzi Ricci operator in terms of the second fundamental form. It is known [15] that the necessary
and sufficient condition for a manifold to have Codazzi Ricci operator is that the Riemann curvature
tensor to be divergence-free, i.e., that the manifold to be R-harmonic [16], hence, we obtain, in this
case, a characterization of R-harmonic Ricci soliton submanifolds. Finally, we deduce that all the results
obtained for the Sasakian case hold true for the cosymplectic case, too.
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1.1. Quasi-Einstein manifolds and Ricci solitons. We recall that a non-flat Riemannian manifold
(M, g) is said to be a quasi-Einstein manifold [8] if the Ricci tensor field Ric is not identically zero and
it satisfies

Ric = ag + bη ⊗ η,

for a and b nonzero smooth functions and η a nonzero 1-form on M . The functions a and b are called
the associated functions. In particular, if a is a constant and b = 0, then the manifold is an Einstein
manifold [1].

If (M, g) is a Riemannian manifold and V is a vector field, then (g, V ) define a Ricci soliton [13] if
there exists a real number λ such that

1

2
£V g +Ric = λg,

where £V g stands for the Lie derivative of g in the direction of V . On the other hand, (g, V ) define a
hyperbolic Ricci soliton [12] if there exist two real numbers λ and µ such that

£V £V g + λ£V g +Ric = µg.

1.2. Basic properties of submanifolds. Let (M̄, ḡ) be a Riemannian manifold, and let M be an
isometrically immersed submanifold. We denote by g the induced Riemannian metric on M , and by ∇̄
and ∇ the Levi-Civita connections of ḡ and g. Then we have the orthogonal decomposition

T̄M = TM ⊕ T⊥M,

and any tangent vector to M̄ decomposes into a tangential component X⊤ and a normal component X⊥.
The Gauss and Weingarten equations are:

∇̄XY = ∇XY + h(X,Y ), ∇̄XU = −BU (X) +∇⊥
XU,

where X and Y are vector fields tangent to M , U is a vector field normal to M , h is the second funda-
mental form, B is the shape operator and ∇⊥ is the normal connection. Also, we have ḡ(h(X,Y ), U) =
g(BU (X), Y ) for any vector fields X,Y tangent to M and any vector field U normal to M .

A submanifold M is said to be U -umbilical [9] (with respect to a normal vector field U) if BU = fI,
where f is a smooth function on M and I is the identity map, totally umbilical [10] if it is umbilical with
respect to every unit normal vector field, totally geodesic if B = 0, and, minimal if trace(B) = 0 (see
[10]).

1.3. Kenmotsu, Sasakian, and cosymplectic manifolds revisited. In 1976, Blair introduced the
notion of almost contact metric structure.

Definition 1.1. [2] An odd dimensional Riemannian manifold (M̄, ḡ) with a (1, 1)-tensor field ϕ and a
vector field ξ (called the Reeb vector field) is said to be an almost contact metric manifold if it satisfies:

(i) ϕ2 = −I + η ⊗ ξ;
(ii) η(ξ) = 1;
(iii) ḡ(ϕX, ϕY ) = ḡ(X,Y )− η(X)η(Y ) for any vector fields X,Y tangent to M̄ ,

where η is the dual 1-form of ξ, and I is the identity map.

It immediately follows, from the definition, that

ϕξ = 0, η ◦ ϕ = 0, ḡ(ϕX, Y ) = −ḡ(X,ϕY )

for any vector fields X,Y tangent to M̄ .
If, for any vector fields X,Y tangent to M̄ , the Levi-Civita connection ∇̄ of ḡ satisfies

(∇̄Xϕ)Y = ḡ(ϕX, Y )ξ − η(Y )ϕX,

then M̄ is a Kenmotsu manifold, if it satisfies

(∇̄Xϕ)Y = ḡ(X,Y )ξ − η(Y )X,
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then M̄ is a Sasakian manifold, and if it satisfies

∇̄ϕ = 0,

then M̄ is a cosymplectic manifold.
For (M, g) an isometrically immersed submanifold of (M̄, ḡ), we shall further denote by TX the

tangential component of ϕX and by NX the normal component of ϕX for any vector field X tangent to
M . It follows that g(TX, Y ) = −g(X,TY ) for any vector fields X,Y tangent to M .

2. Ricci and hyperbolic Ricci soliton submanifolds of a Kenmotsu manifold

Now we assume that (M̄, ḡ, ϕ, ξ, η) is a Kenmotsu manifold. Then the Levi-Civita connection ∇̄ of ḡ
satisfies

∇̄ξ = I − η ⊗ ξ.(2.1)

From the Gauss and Weingarten formulas, we have

∇̄Xξ⊤ = ∇Xξ⊤ + h(X, ξ⊤),(2.2)

∇̄Xξ⊥ = −Bξ⊥(X) +∇⊥
Xξ⊥,(2.3)

hence, by means of (2.1), (2.2), and (2.3), for any vector field X tangent to M , by identifying the
tangential components, we get

∇Xξ⊤ = Bξ⊥(X) +X − g(X, ξ⊤)ξ⊤

and

(£ξ⊤g)(X,Y ) = g(∇Xξ⊤, Y ) + g(∇Y ξ
⊤, X)(2.4)

= 2g(Bξ⊥(X), Y ) + 2g(X,Y )− 2g(X, ξ⊤)g(Y, ξ⊤).

Then we deduce

Theorem 2.1. The submanifold (M, g, ξ⊤) is a Ricci soliton if and only if there exists a real number λ
such that

RicM (X,Y ) = (λ− 1)g(X,Y ) + η(X)η(Y )− g(Bξ⊥(X), Y )(2.5)

for any vector fields X,Y tangent to M .

Proof. The necessary and sufficient condition for (M, g, ξ⊤) to be a Ricci soliton is to exist λ ∈ R such
that

1

2
£ξ⊤g +RicM = λg,

which, by means of (2.4), is equivalent to (2.5). □

From Theorem 2.1, we obtain

Corollary 2.2. A ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤, λ) with Bξ⊥ = fI for f a smooth
function on M is a quasi-Einstein manifold with associated functions (λ− f − 1) and 1.

Also, from Theorem 2.1, we get the expression for the Ricci operator QM of M :

QM (X) = (λ− 1)X + η(X)ξ⊤ −Bξ⊥(X)(2.6)

for any vector field X tangent to M , and we get

Proposition 2.3. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then, for any vector fields X,Y tangent
to M , we have

(∇XQM )Y = −(∇XBξ⊥)Y + η(Y )[Bξ⊥(X) +X](2.7)

+ [g(X,Y )− 2η(X)η(Y ) + g(Bξ⊥(X), Y )]ξ⊤.
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Proof. Indeed,

(∇XQM )Y = ∇X(QM (Y ))−QM (∇XY )

= (λ− 1)∇XY +X(g(Y, ξ⊤))ξ⊤ + g(Y, ξ⊤)∇Xξ⊤ −∇X(Bξ⊥(Y ))

− (λ− 1)∇XY − g(∇XY, ξ⊤)ξ⊤ +Bξ⊥(∇XY )

= g(Y,∇Xξ⊤)ξ⊤ + g(Y, ξ⊤)∇Xξ⊤ − (∇XBξ⊥)Y

= g
(
Y,Bξ⊥(X) +X − g(X, ξ⊤)ξ⊤

)
ξ⊤

+ g(Y, ξ⊤)
(
Bξ⊥(X) +X − g(X, ξ⊤)ξ⊤

)
− (∇XBξ⊥)Y

= g(Y,Bξ⊥(X))ξ⊤ + g(X,Y )ξ⊤ − g(X, ξ⊤)g(Y, ξ⊤)ξ⊤

+ g(Y, ξ⊤)Bξ⊥(X) + g(Y, ξ⊤)X − g(X, ξ⊤)g(Y, ξ⊤)ξ⊤ − (∇XBξ⊥)Y

for any vector fields X,Y tangent to M , and we get (2.7). □

As consequences, we deduce

Corollary 2.4. A Ricci soliton submanifold (M, g, ξ⊤) has Codazzi Ricci operator if and only if

(∇XBξ⊥)Y − (∇Y Bξ⊥)X = η(Y )(Bξ⊥ + I)(X)− η(X)(Bξ⊥ + I)(Y )(2.8)

for any vector fields X,Y tangent to M .

Proof. From (2.7), we have

(∇XQM )Y − (∇Y QM )X = −(∇XBξ⊥)Y + η(Y )[Bξ⊥(X) +X]

+ (∇Y Bξ⊥)X − η(X)[Bξ⊥(Y ) + Y ]

for any vector fields X,Y tangent to M , and we get (2.8). □

Corollary 2.5. A ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤) with Bξ⊥ = fI has Codazzi Ricci
operator if and only if

∇f = −(f + 1)ξ⊤.

Proof. In this case, for any vector fields X,Y tangent to M , we have

(∇XBξ⊥)Y = ∇X(fY )− f(∇XY ) = X(f)Y,

and the equation (2.8) becomes

X(f)Y − Y (f)X = (f + 1)[η(Y )X − η(X)Y ],

which is equivalent to

[df(X) + (f + 1)η(X)]Y = [df(Y ) + (f + 1)η(Y )]X

and to

g(∇f + (f + 1)ξ⊤, X)Y = g(∇f + (f + 1)ξ⊤, Y )X,

and we get the assertion. □

Proposition 2.6. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then we have

T ◦QM −QM ◦ T = −(T ◦Bξ⊥ −Bξ⊥ ◦ T ) + η ⊗ Tξ⊤ − (η ◦ T )⊗ ξ⊤.(2.9)

Proof. For any vector field X tangent to M , from (2.6), we have

T (QM (X)) = (λ− 1)TX + η(X)Tξ⊤ − T (Bξ⊥(X)),

and

QM (TX) = (λ− 1)TX + η(TX)ξ⊤ −Bξ⊥(TX),

and we get (2.9). □
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As consequences, we deduce

Corollary 2.7. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then, the Ricci operator QM commutes
with the operator T if and only if

T ◦Bξ⊥ −Bξ⊥ ◦ T = η ⊗ Tξ⊤ − (η ◦ T )⊗ ξ⊤.

Corollary 2.8. A ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤, λ) with Bξ⊥ = fI such that ∇f is

not pointwise collinear with ξ⊤ is Ricci symmetric (i.e., ∇QM = 0) if and only if Bξ⊥ = −I.

Proof. In this case, for any vector fields X,Y tangent to M , from (2.7), we have

X(f)Y + (f + 1)η(Y )X = −[(f + 1)g(X,Y )− 2η(X)η(Y )]ξ⊤.

Since in the righthand side of the above equality we have a symmetric (0, 2)-tensor field, then the lefthand
side must be symmetric, too, hence

X(f)Y + (f + 1)η(Y )X = Y (f)X + (f + 1)η(X)Y

for any vector fields X,Y tangent to M , which is equivalent to

[df(X)− (f + 1)η(X)]Y = [df(Y )− (f + 1)η(Y )]X,

and we get ∇f = −(f + 1)ξ⊤, hence f = −1. □

From Corollary 2.7, we deduce

Corollary 2.9. If the submanifold (M, g, ξ⊤) is a Ricci soliton such that the Ricci operator QM commutes
with T , then, the shape operator in the direction of ξ⊥ commutes with T if and only if ξ⊤ = 0. In this
case, the soliton is trivial and M is an Einstein manifold.

Remark 2.10. The same conclusion, namely ξ⊤ = 0, is reached if the submanifold (M, g, ξ⊤) is a
ξ⊥-umbilical Ricci soliton such that the Ricci operator QM commutes with T .

Now, if M is a ξ⊥-umbilical submanifold with Bξ⊥ = fI, then, for any vector fields X,Y tangent to
M , we have

∇Xξ⊤ = (f + 1)X − η(X)ξ⊤,

(£ξ⊤g)(X,Y ) = 2(f + 1)g(X,Y )− 2η(X)η(Y ),

(£ξ⊤£ξ⊤g)(X,Y ) = 2[ξ⊤(f) + 2(f + 1)2]g(X,Y ) + 4[2∥ξ⊤∥2 − 3(f + 1)]η(X)η(Y ),

and we obtain

Theorem 2.11. A ξ⊥-umbilical submanifold (M, g, ξ⊤) is a hyperbolic Ricci soliton if and only if there
exist two real numbers λ and µ such that

RicM (X,Y ) = [µ− 2ξ⊤(f)− 4(f + 1)2 − 2(f + 1)λ]g(X,Y )(2.10)

+ [2λ+ 12(f + 1)− 8∥ξ⊤∥2]η(X)η(Y )

for any vector fields X,Y tangent to M .

Proof. The necessary and sufficient condition for (M, g, ξ⊤) to be a hyperbolic Ricci soliton is to exist
λ, µ ∈ R such that

£ξ⊤£ξ⊤g + λ£ξ⊤g +RicM = µg,

which is equivalent to (2.10). □

And we deduce

Corollary 2.12. A ξ⊥-umbilical submanifold (M, g, ξ⊤) is a Ricci soliton if and only if it is a quasi-
Einstein manifold with associated functions

µ− 2ξ⊤(f)− 4(f + 1)2 − 2(f + 1)λ and 2λ+ 12(f + 1)− 8∥ξ⊤∥2.
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Remark 2.13. We notice that, if the submanifold is ξ⊥-umbilical, then ξ⊤ can not be a Killing vector
field, i.e., £ξ⊤g can not identically vanish.

3. Ricci and hyperbolic Ricci soliton submanifolds of a Sasakian manifold

Now we assume that (M̄, ḡ, ϕ, ξ, η) is a Sasakian manifold. Then the Levi-Civita connection ∇̄ of ḡ
satisfies

∇̄ξ = −ϕ.(3.1)

From the Gauss and Weingarten formulas, we have

∇̄Xξ⊤ = ∇Xξ⊤ + h(X, ξ⊤),(3.2)

∇̄Xξ⊥ = −Bξ⊥(X) +∇⊥
Xξ⊥,(3.3)

hence, by means of (3.1), (3.2), and (3.3), for any vector field X tangent to M , by identifying the
tangential components, we get

∇Xξ⊤ = Bξ⊥(X)− TX

and

(£ξ⊤g)(X,Y ) = g(∇Xξ⊤, Y ) + g(∇Y ξ
⊤, X)(3.4)

= 2g(Bξ⊥(X), Y ).

Then we deduce

Theorem 3.1. The submanifold (M, g, ξ⊤) is a Ricci soliton if and only if there exists a real number λ
such that

RicM (X,Y ) = λg(X,Y )− g(Bξ⊥(X), Y )(3.5)

for any vector fields X,Y tangent to M .

Proof. The necessary and sufficient condition for (M, g, ξ⊤) to be a Ricci soliton is to exist λ ∈ R such
that

1

2
£ξ⊤g +RicM = λg,

which, by means of (3.4), is equivalent to (3.5). □

From Theorem 3.1, we obtain

Corollary 3.2. A ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤, λ) with Bξ⊥ = fI for f a smooth
function on M is an Einstein manifold provided that m = dim(M) > 2, of scalar curvature

scalM = m(λ− f).

Also, from Theorem 3.1, we get the expression for the Ricci operator QM of M :

QM (X) = λX −Bξ⊥(X)(3.6)

for any vector field X tangent to M , and we get

Proposition 3.3. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then, for any vector fields X,Y tangent
to M , we have

(∇XQM )Y = −(∇XBξ⊥)Y.(3.7)
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Proof. Indeed,

(∇XQM )Y = ∇X(QM (Y ))−QM (∇XY )

= λ∇XY −∇X(Bξ⊥(Y ))− λ∇XY +Bξ⊥(∇XY )

= −(∇XBξ⊥)Y

for any vector fields X,Y tangent to M , and we get (3.7). □

As consequences, we deduce

Corollary 3.4. A Ricci soliton submanifold (M, g, ξ⊤) has Codazzi (in particular, parallel) Ricci operator
if and only if it has Codazzi (in particular, parallel) shape operator in the direction of ξ⊥.

Proof. From (3.7), we have

(∇XQM )Y − (∇Y QM )X = (∇Y Bξ⊥)X − (∇XBξ⊥)Y

for any vector fields X,Y tangent to M , and we get the conclusion. □

Corollary 3.5. A ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤) with Bξ⊥ = fI has Codazzi Ricci
operator if and only if f is a constant.

Proof. In this case, for any vector fields X,Y tangent to M , we have

(∇XBξ⊥)Y = ∇X(fY )− f(∇XY ) = X(f)Y,

and we get

(∇XQM )Y − (∇Y QM )X = Y (f)X −X(f)Y,

hence the conclusion. □

Proposition 3.6. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then we have

T ◦QM −QM ◦ T = −(T ◦Bξ⊥ −Bξ⊥ ◦ T ).(3.8)

Proof. For any vector field X tangent to M , from (3.6), we have

T (QM (X)) = λTX − T (Bξ⊥(X)),

and

QM (TX) = λTX −Bξ⊥(TX),

and we get (3.8). □

As consequences, we deduce

Proposition 3.7. If the submanifold (M, g, ξ⊤) is a Ricci soliton, then, the Ricci operator QM commutes
with the operator T if and only if the shape operator in the direction of ξ⊥ commutes with T .

Proof. It follows from (3.8). □

Corollary 3.8. For any ξ⊥-umbilical Ricci soliton submanifold (M, g, ξ⊤), the Ricci operator QM com-
mutes with T .

Now, if M is a ξ⊥-umbilical submanifold with Bξ⊥ = fI, then, for any vector fields X,Y tangent to
M , we have

∇Xξ⊤ = fX − TX,

(£ξ⊤g)(X,Y ) = 2fg(X,Y ),

(£ξ⊤£ξ⊤g)(X,Y ) = 2[ξ⊤(f) + 2f2]g(X,Y ),

and we obtain
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Theorem 3.9. A ξ⊥-umbilical submanifold (M, g, ξ⊤) is a hyperbolic Ricci soliton if and only if there
exist two real numbers λ and µ such that

RicM (X,Y ) = [µ− 2ξ⊤(f)− 4f2 − 2fλ]g(X,Y )(3.9)

for any vector fields X,Y tangent to M .

Proof. The necessary and sufficient condition for (M, g, ξ⊤) to be a hyperbolic Ricci soliton is to exist
λ, µ ∈ R such that

£ξ⊤£ξ⊤g + λ£ξ⊤g +RicM = µg,

which is equivalent to (3.9). □

And we deduce

Corollary 3.10. A ξ⊥-umbilical submanifold (M, g, ξ⊤) is a hyperbolic Ricci soliton if and only if it is
an Einstein manifold provided that m = dim(M) > 2, of scalar curvature

scalM = m[µ− 2ξ⊤(f)− 4f2 − 2fλ].

Remark 3.11. We notice that, if the submanifold is ξ⊥-umbilical, then ξ⊤ is a Killing vector field if and
only if f = 0. In particular, if a hypersurface is ξ⊥-umbilical, then ξ⊤ is a Killing vector field if and only
if it is a totally geodesic hypersurface.

4. Ricci and hyperbolic Ricci soliton submanifolds of a cosymplectic manifold

Now we assume that (M̄, ḡ, ϕ, ξ, η) is a cosymplectic manifold. Then the Levi-Civita connection ∇̄ of
ḡ satisfies

∇̄ξ = 0.(4.1)

From the Gauss and Weingarten formulas, we have

∇̄Xξ⊤ = ∇Xξ⊤ + h(X, ξ⊤),(4.2)

∇̄Xξ⊥ = −Bξ⊥(X) +∇⊥
Xξ⊥,(4.3)

hence, by means of (4.1), (4.2), and (4.3), for any vector field X tangent to M , by identifying the
tangential components, we get

∇Xξ⊤ = Bξ⊥(X)

and

(£ξ⊤g)(X,Y ) = g(∇Xξ⊤, Y ) + g(∇Y ξ
⊤, X)

= 2g(Bξ⊥(X), Y ).

If M is a ξ⊥-umbilical submanifold with Bξ⊥ = fI, then, for any vector fields X,Y tangent to M , we
have

∇Xξ⊤ = fX,

(£ξ⊤g)(X,Y ) = 2fg(X,Y ),

(£ξ⊤£ξ⊤g)(X,Y ) = 2[ξ⊤(f) + 2f2]g(X,Y ),

and we deduce that all the results obtained for the Sasakian case hold true for the cosymplectic case, too.
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