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Abstract. According to the well-known Reilly result [10], the first eigenvalue of an n-
dimensional compact submanifold in an (n+ p)-dimensional Euclidean space is bounded
above by n times the average value of the square of the norm of the mean curvature vec-
tor field. Furthermore, if the eigenvalue achieves this bound, then the submanifold lies
minimally in a hypersphere. However, through a counterexample, we will show, following
[9], that Reilly’s result does not hold for a compact spacelike submanifold of Lorentz-
Minkowski spacetime. In the search for an alternative result, we revisit Reilly’s original
proof. Subsequently, we explain the new technique introduced in [9], which is based on
an integral formula on a compact spacelike section of the light cone in Lorentz-Minkowski
spacetime. We derive a family of upper bounds for the first eigenvalue of the Laplacian
of a compact spacelike submanifold of Lorentz-Minkowski spacetime. The equality for
one of these inequalities is characterized. On the way, we reprove Reilly’s original result
if a compact submanifold of Euclidean space is naturally seen as a compact spacelike
submanifold of Lorentz-Minkowski spacetime through a spacelike hyperplane.
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1. Introduction

Let (Mn, g) be a (connected) n-dimensional Riemannian manifold and ∆ its Laplacian, i.e.,

∆f := div(∇f) = tracegHess(f) =
1√

det(gkl)

∑
i j

∂

∂xi

(√
det(gkl) g

ij ∂f

∂xj

)
,

where f ∈ C∞(Mn), div, ∇ and Hess are divergence, Hessian, and gradient operators, respectively,
tracegHess(f) denotes the trace of the (1, 1) tensor field g-equivalent to Hess(f) and (x1, ..., xn) a local
coordinate system in Mn.

The Laplacian is a Riemannian invariant in the following sense
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funded by MCIN-AEI-10.13039-501100011033.
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Proposition 1.1. If F : (Mn, g) → (M ′n, g′) is an isometry between Riemannian manifolds, then

(∆′f ′) ◦ F = ∆(f ′ ◦ F ),
for all f ′ ∈ C∞(M ′n), where ∆, ∆′ are the respective Laplacians.

The Laplacian is an elliptic differential operator and, if Mn is compact, then it is self-adjoint and
positive definite for the L2-inner product

⟨f, h⟩ =
∫
Mn

f h dµg,

f, h ∈ C∞(Mn), where dµg is the canonical measure on Mn defined from g, [3].

Definition 1.2. A real number λ is an eigenvalue of ∆ if there exists f ∈ C∞(Mn), f ̸= 0, such that

∆f + λ f = 0.

In this case, f is called an eigenfunction of ∆.1

For any compact Riemannian manifold (Mn, g) we have, [1], [3]

(1) 0 is an eigenvalue,

(2) Any eigenvalue λ satisfies λ ≥ 0,

(3) The eigenvalues of ∆ are collected in an increasing discrete sequence
λ0 := 0 < λ1 < λ2... < λk...↗ ∞

(4) From Proposition 1.1, if a two Riemannian manifolds (Mn, g) and (M ′n, g′) are isometric, then
both have the same eigenvalues (including multiplicities).

(5) The converse is not true in general: there exist two flat Riemannian tori of dimension 16 which
are not (globally) isometric, and whose Laplacians have the same sequence of eigenvalues [6].
However, two flat Riemannian tori of dimension 2 whose Laplacian has the same sequence of
eigenvalues are isometric [1, Prop. B.II.5].

Example 1.3. For the case of the n-dimensional round sphere with radius r, Sn
(r), we have:

λk =
k

r2
(n+ k − 1), k = 0, 1, 2, ...

and the corresponding eigenfunctions are the restrictions to Sn
(r) of the homogeneous harmonic polyno-

mials of n + 1 variables and of degree k. This is carried out relating, by means of the Gauss formula of

Sn
(r) in Rn+1

, the functions ∆(f|Sn ) and (∆0f)|Sn , for f ∈ C∞(Rn+1
) where ∆, ∆0 are the Laplacians of

the metric of Sn
and of the usual Riemannian metric of Rn+1

, respectively [1, Prop. C.I.1]. In particular,
for the unit round sphere, Sn

, have
λ1 = n,

with ∆f + n f = 0, where f = φ|Sn and φ : Rn+1 → R is linear and φ ̸= 0.
In general, computing the sequence of eigenvalues for a concrete compact Riemannian manifold is not

easy. Often, we only have an intrinsic or extrinsic bound of one specific eigenvalue, with interesting
geometric information when equality holds. That is the case for the following relevant result

Theorem 1.4. [10] (Reilly).For an n-dimensional compact submanifold Mn (immersed) in the (n+ p)-

dimensional Euclidean space Rn+p
, the first non-trivial eigenvalue λ1 of the Laplacian of the induced

metric g on Mn satisfies

(Re) λ1 ≤ n

∫
Mn

∥H∥2 dµg

vol(Mn)
,

1In the usual notation of Linear Algebra, λ and f are an eigenvalue and an eigenfunction of the operator
−∆, respectively.
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where ∥H∥2 is the squared length of the mean curvature vector field H, and vol(Mn) is the volume of
Mn. Moreover, the equality holds in (Re) if and only if Mn lies minimally in some hypersphere of radius√
n/λ1 in Rn+p

.

Now consider (n + p)-dimensional Lorentz-Minkowski spacetime Ln+p
, i.e., Rn+p

endowed with the

Lorentzian metric −dx21 +
∑n+p

i=2 dx
2
i , where (x1, ..., xn+p) are the usual coordinates of Rn+p

. An immer-

sion ψ : Mn → Ln+p
is said to be spacelike if the induced metric on Mn via ψ is Riemannian. In this

case Mn is called a spacelike submanifold of Ln+p
. In view of Theorem 1.4, the following question arises

naturally:

Does Reilly inequality (Re) work for any compact spacelike submanifold Mn of Ln+p
,

p ≥ 2?

We point out that there exists no compact spacelike hypersurface in Lm (see [5], for instance), this is the
reason to write p ≥ 2.

Along this paper, we will focus on this question following mainly [9]. Thus, we will show a counter-
example in Section 2 that says that the answer to this question is in general negative. Moreover, after
revisiting the Reilly argument for the proof of Theorem 1.4 in Section 3, we will detail in Section 4
several unavoidable technical difficulties that make impossible the translation of Reilly’s technique to our
setting. However, there are several concrete assumptions on the compact spacelike submanifold where
(Re) remains true. For instance: (i) Any compact spacelike submanifold Mn contained in a spacelike

hyperplane of Ln+p
satisfies obviously (Re). (ii) Any compact spacelike surface in L4

contained in a
light cone satisfies (Re) [8, Thm. 5.4]. (iii) Any n-dimensional compact submanifold in the hyperbolic
space Hm−1 ⊂ Lm

also satisfies (Re) [11, Thm. 1]. Moreover, (iv) any compact 4-dimensional spacelike
submanifold M4 of L6 contained in a light cone we have λ21 ≤ 16

∫
M4 ∥H∥4dµg/vol(M

4) [7, Cor. 5.6]. In
all cases equality is geometrically characterized.

Section 5 is devoted to explaining a key technical result, Lemma 5.1, that has the same role in our
approach as [10, Main Lemma] in Reilly’s approach, to get Theorem 1.4. Finally, in Section 6 we will
explain Theorem 6.1, obtained originally in [9, Thm. 6.10], as an alternative inequality to (Re), pointing
out in what sense it is a generalization of Theorem 1.4 and exposing some of its consequences.

2. A counter-example

We denote a point of the (n+1)-dimensional Euclidean space Rn+1
by (t, x) where t ∈ R and x ∈ Rn

and a point of the (n+2)-dimensional Lorentz-Minkowski spacetime Ln+2
by (t, s, x) where t, s ∈ R and

x ∈ Rn
. Following [PR, Section 3], we consider the map

(2.1) Ψ : Rn+1 → Ln+2
, (t, x) 7→ (cosh(t), sinh(t), x),

which is an embedding, and the metric induced, via Ψ, on Rn+1
is the usual one, i.e., Ψ is an isometric

embedding. Note that

Ψ(Rn+1
) = {(x1, x2, x) ∈ Ln+2

: x21 − x22 = 1, x1 > 0, x ∈ Rn},

is a cylinder over a (branch of a) Lorentzian circle in the Lorentzian plane x = 0 (see [2], for instance).

Let us consider now the n(≥ 1)-dimensional unit round sphere Sn ⊂ Rn+1
endowed with its usual

Riemannian metric g. Then, we have that

(2.2) ψ := Ψ |Sn : Sn → Ln+2

is also an isometric embedding.

In order to compute the mean curvature vector field H of ψ we make use of the Beltrami equation

(2.3) ∆ψ = nH.
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Thus, we get

H(t, x) =
(
f1(t), f2(t) ,−x

)
,

for all (t, x) ∈ Sn, where

f1(t) = −t sinh t+ 1

n
(1− t2) cosh t, f2(t) = −t cosh t+ 1

n
(1− t2) sinh t.

Therefore, we obtain

0 ≤ ∥H(t, x)∥2 = 1− 1

n2
(1− t2)2 ≤ 1,

and equality to 1 holds if and only if (t, x) = (±1, 0). Thus, we have∫
Sn
∥H∥2 dV ≤ vol(Sn

),

where dV is the canonical measure on Sn
. Moreover, equality does not hold. Otherwise, we will arrive

to ∥H∥2 = 1, which is untrue.

Consequently, if (Re) holds, we get

λ1 = n ≤ n

∫
Sn
∥H∥2 dV

vol(Sn
)

< n ,

which is a contradiction.

3. Revisiting Reilly’s proof

Consider now a compact manifold Mn and an immersion ψ : Mn → Rn+p
, ψ = (ψ1, ..., ψn+p), and

denote by g the induced metric on Mn via ψ. We will break down Reilly’s argument into several steps
to elucidate our approach in the Lorentzian setting.

Step 1. By composing ψ with a suitable translation, we can assume that the gravity center of ψ is
located at the origin. Importantly, this ’change’ does not alter the intrinsic or extrinsic geometry of Mn.
Therefore we have ∫

Mn

ψj dµg = 0,

for all j = 1, ..., n+ p. Observe that this is equivalent to

(3.1)

∫
Mn

⟨ψ, v⟩ dµg = 0,

for all v ∈ Rn+p
.

Step 2. According to the Minimum Principle for λ1 [1, Lemme D.II.3] we have:

(3.2) λ1

∫
Mn

⟨ψ, v⟩2 dµg ≤
∫
Mn

∥∇⟨ψ, v⟩∥2 dµg,

for any v ∈ Rn+p
, or equivalently, for any v ∈ Sn+p−1

. Moreover, the equality holds in (3.2) for some v
with ⟨ψ, v⟩ ̸= 0, if and only if

∆⟨ψ, v⟩+ λ1⟨ψ, v⟩ = 0.

Step 3. Integrating on Sn+p−1
both members in integral inequality (3.2), we get:

(3.3) λ1

∫
v∈Sn+p−1

∫
Mn

⟨ψ, v⟩2 dµg dV ≤
∫
v∈Sn+p−1

∫
Mn

∥∇⟨ψ, v⟩∥2 dµg dV,

where dV is the canonical measure on Sn+p−1
.
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Now, we can use Fubini’s theorem in inequality (3.3) to get:

λ1

∫
x∈Mn

{∫
v∈Sn+p−1

⟨ψ(x), v⟩2 dV
}
dµg ≤

(3.4) ≤
∫
x∈Mn

{∫
v∈Sn+p−1

∥∇⟨ψ, v⟩∥2(x) dV
}
dµg,

Step 4. To compute both members in the previous integral inequality, we need the following technical
result

Lemma 3.1. (Averaging Principle). If T : Rm+1 × Rm+1 → R is a symmetric bilinear form and

Φ : Rm+1 → R, Φ(v) := T (v, v), is the corresponding quadratic form, then,∫
Sm

Φ dV =
1

m+ 1
traceg0(T ) vol(Sm

),

where g0 is the usual metric on Rm+1
and traceg0(T ) denotes the trace of the operator g0-equivalent to

T .

Now, for each (fixed) x ∈Mn, let us first consider T : Rn+p ×Rn+p → R given by

(3.5) T (u, v) := ⟨ψ(x), u⟩⟨ψ(x), v⟩,

that satisfies

traceg0(T ) = ∥ψ(x)∥2.
Then, using previous Lemma 3.1 for T given by (3.5) we obtain

(3.6)

∫
v∈Sn+p−1

⟨ψ(x), v⟩2 dV =
1

n+ p
∥ψ(x)∥2 vol(Sn+p−1

).

Next, consider

(3.7) T (u, v) := ⟨∇⟨ψ, u⟩,∇⟨ψ, v⟩⟩(x).

Taking into account that

∇⟨ψ, v⟩(x) = v⊤(x),

we get

traceg0(T ) = n.

Consequently, using again Lemma 3.1 for the symmetric bilinear form given by (3.7), we achieve

(3.8)

∫
v∈Sn+p−1

∥∇⟨ψ, v⟩∥2(x) dV =
1

n+ p
n vol(Sn+p−1

).

Therefore, the integral inequality (3.4) reduces to

(Re∗) λ1

∫
Mn

∥ψ∥2 dµg ≤ n vol(Mn),

which is [10, Main Lemma]. Moreover, from Step 2, the equality holds in (Re∗) if and only if

∆⟨ψ, v⟩+ λ1⟨ψ, v⟩ = 0,

for all v ∈ Sn+p−1, i.e., if and only if

∆ψ + λ1ψ = 0 ..
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Theorem 3.2. Takahashi [12, Thm. 3] If an immersion ψ :Mn → Rm
of a manifold Mn in Euclidean

space Rn+p
satisfies

(3.9) ∆ψ + λψ = 0,

for some constant λ ̸= 0, then λ is necessarily positive, and ψ realizes a minimal immersion in an

hypersphere Sn+p−1
(
√
n/λ) of radius

√
n/λ in Rn+p

. Conversely, if ψ realizes a minimal immersion

in a hypersphere of radius R in Rn+p
, then ψ satisfies (3.9) up to a parallel displacement in Rn+p

and
λ = n/R2 .

Therefore, equality in (Re*) holds if and only if ψ(Mn) lies minimally in a hypersphere in Rn+p
of

radius
√
n/λ1. Note that the characterization of equality in (Re*) is also a part of [10, Main Lemma].

Step 5. (The final step). Given an immersion Ψ : Mn → Rn+p
, we construct ψ : Mn → Rn+p

such
that the gravity center of ψ is located at the origin as above. Multiplying both members of (Re∗) by∫
Mn ∥H∥2 dµg, the left-hand side can be bounded from below in the following way∫

Mn

∥ψ∥2 dµg

∫
Mn

∥H∥2 dµg ≥
(∫

Mn

∥ψ∥ ∥H∥ dµg

)2

(3.10) ≥
(∫

Mn

⟨ψ,H⟩ dµg

)2

,

where we have used L2-Schwarz inequality and Schwarz inequality in Rn+p
.

Now, we use the general formula

∆∥ψ∥2 = 2n (1 + ⟨ψ,H⟩)

to write

(3.11)

∫
Mn

⟨ψ,H⟩ dµg = − vol(Mn).

Substituting (3.11) in the integral inequality (3.10) we arrive to

(3.12)

∫
Mn

∥ψ∥2 dµg

∫
Mn

∥H∥2 dµg ≥ vol(Mn)2.

From (Re*), taking into account (3.11) we obtain

λ1 vol(M
n)2 ≤ n vol(Mn)

∫
Mn

∥H∥2 dµg ,

which establishes inequality (Re). The equality holds in (Re) if and only if the equality holds in (Re*).

Hence, if and only if ψ(Mn) lies minimally in a hypersphere in Rn+p
of radius

√
n/λ1 .

4. The approach for compact spacelike submanifolds

In view of the previous section, we assert that Reilly’s technique is not applicable to compact spacelike
submanifolds of Lm

for several significant reasons, namely:

(1) The Averaging Principle, shown in Lemma 3.1 cannot be extended by substituting Sm
with either

the hypersurface of unit spacelike vectors or the hypersurface of (pointing future) unit timelike vectors

in Lm+1
, both of which are non-compact.

(2) The normal bundle of a codimension ≥ 2 spacelike submanifold of Lm
has a Lorentzian signature,

in particular ∥H∥2 may not have a definite sign.

(3) The Schwarz inequality for vectors in Rm
does not hold for vectors in Lm

.
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Considering both these difficulties and the counter-example presented in Section 2, we will introduce
an alternative approach to the one used by Reilly, as described in Section 3, specifically tailored for
compact submanifolds of Lm.

To begin our technique, let us introduce a new geometric object. Denote by ⟨ , ⟩ the Lorentzian metric

of Lm+1
. For each unit timelike vector a ∈ Lm+1, i.e., with ⟨a, a⟩ = −1, we define the spherical section

in Lm+1
relative to a as

(4.1) Sm−1
a := {v ∈ Lm+1

: ⟨v, v⟩ = 0, ⟨a, v⟩ = −1},

that is, Sm−1
a is the intersection of the light cone of Lm+1

with the spacelike hyperplane

Rm
a := {v ∈ Lm+1

: ⟨a, v⟩ = −1}.

Clearly, Sm−1
a is a hypersphere not centered at the origin in the spacelike hyperplane Rm

a ,and, therefore,

a compact codimension two spacelike submanifold of Lm+1
. Moreover, it is isometric to the unit round

sphere Sm−1
in Euclidean space Rm

. In particular, we have

(4.2) vol(Sm−1
a ) = vol(Sm−1

),

for all unit timelike vector a.

The essential tool we will use here is the following integral formula

Lemma 4.1. (Generalized Averaging Principle) [4, Lemma 3.4(b)] If T : Rm+1 × Rm+1 → R is a

symmetric bilinear form, Φ : Rm+1 → R, Φ(v) = T (v, v), the corresponding quadratic form, and a is a

unit timelike vector in Lm+1
, we have,∫

Sm−1
a

Φ dVa =
1

m

[
(m+ 1)T (a, a) + trace⟨ , ⟩(T )

]
vol(Sm−1

),

where dVa is the canonical measure on Sm−1
a , trace⟨ , ⟩(T ) := trace(AT ) and AT is the linear operator of

Lm+1
defined by ⟨AT (u), v⟩ = T (u, v), for all u, v ∈ Lm+1

.

5. A key technical result

Lemma 5.1. [9, Lemma 6.4] Let Mn be an n-dimensional compact manifold and ψ : Mn → Ln+p
,

p ≥ 2, be a spacelike immersion with gravity center located at the origin.

For every unit timelike vector a ∈ Ln+p
, the first eigenvalue λ1 of the Laplacian of the induced metric

g on Mn satisfies

(PR∗) λ1

∫
Mn

∥ψa∥2 dµg ≤ n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg,

where ψa := ψ + ⟨ψ, a⟩a is, at each point x ∈ Mn, the orthogonal projection of ψ(x) on the spacelike

hyperplane a⊥ of Ln+p
. Moreover, the equality holds in (PR∗) for some unit timelike vector a if and only

if

∆ψa + λ1ψa = 0 .

Remark 5.2. (a) Note that the previous characterization of the equality in (PR∗) turns to be equivalent
to ∆ψ+λ1ψ = fa a, for some fa ∈ C∞(Mn). (b) Particularly, if ψ = ψa for some a, i.e., if ψ(Mn) ⊂ a⊥,
then a⊤ = 0.Therefore, in this case, the result is just inequality (Re∗); that is to say, [10, Main Lemma].

Remark 5.3. Before delving into the proof of Lemma 5.1, it would be clarifying to provide a few
comments on the map ψa, introduced in that result. Note that ψa may be considered as a map

ψa :Mn → a⊥,
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and that satisfies dψa(v) = dψ(v) + ⟨dψ(v), a⟩ a. Therefore,
dψa(v) = 0 ⇐⇒ dψ(v)︸ ︷︷ ︸

spacelike

= − ⟨dψ(v), a⟩ a︸ ︷︷ ︸
timelike or zero

.

Thus, dψa(v) = 0 gives v = 0, showing that ψa is an immersion. Furthermore, the Riemannian metric ga

on Mn induced from the metric on a⊥, via ψa, satisfies

ga(u, v) = g(u, v) + ⟨dψ(u), a⟩⟨dψ(v), a⟩,
for any u, v ∈ TxM

n, x ∈ Mn. Consequently, ga = g if and only if a ⊥ dψx(TxM
n) for any x ∈ Mn.

Thus, [10, Main Lemma] cannot be applied to ψa :Mn → a⊥ to prove Lemma 5.1.

Proof. By hypothesis, we known that the center of gravity of ψ is located at the origin. Therefore, from
(3.1) we have

(5.1)

∫
Mn

⟨ψa, v⟩ dµg = 0,

for all v ∈ Ln+p
. Using now the Minimum Principle for the function ⟨ψa, v⟩, we get

(5.2) λ1

∫
Mn

⟨ψa, v⟩2 dµg ≤
∫
Mn

∥∇⟨ψa, v⟩∥2 dµg,

and the equality holds for some v, with ⟨ψa, v⟩ ̸= 0, if and only if

∆⟨ψa, v⟩+ λ1⟨ψa, v⟩ = 0.

Integrating both members of inequality (5.2) and using, as Section 3, Fubiny’s theorem, we get

λ1

∫
x∈Mn

{∫
v∈Sn+p−2

a

⟨ψa(x), v⟩2 dVa
}
dµg ≤

(5.3) ≤
∫
x∈Mn

{∫
v∈Sn+p−2

a

∥∇⟨ψa, v⟩∥2(x) dVa
}
dµg,

where dVa is the canonical measure on Sn+p−2
a .

For each (fixed) x ∈Mn consider

(5.4) T (u, v) = ⟨ψa(x), u⟩⟨ψa(x), v⟩,
that satisfies

trace⟨ , ⟩(T ) = ∥ψa(x)∥2 and T (a, a) = 0.

Then, using Lemma 4.1 for the symmetric bilinear form given by (5.4), we get

(5.5)

∫
v∈Sn+p−2

a

⟨ψa(x), v⟩2 dVa =
1

n+ p− 1
∥ψa(x)∥2 vol(Sn+p−2

).

On the other hand, consider now

(5.6) T (u, v) = ⟨∇⟨ψa, u⟩,∇⟨ψa, v⟩⟩(x).
Clearly, T (a, a) = 0 and ∇⟨ψa, v⟩(x) = v⊤(x) + ⟨a, v⟩a⊤(x).

If we take an orthonormal basis of Ln+p
so that

( e1, ..., en︸ ︷︷ ︸
inTxMn

, en+1, ..., en+p︸ ︷︷ ︸
inT⊥

x Mn

),

then, we compute

trace⟨ , ⟩(T ) =
n∑

i=1

〈
ei + ⟨a, ei⟩a⊤(x), ei + ⟨a, ei⟩a⊤(x)

〉
+
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+

n+p∑
j=n+1

⟨a, ej⟩2∥a⊤(x)∥2,

Thus,

trace⟨ , ⟩(T ) = n+ ∥a⊤(x)∥4 + 2∥a⊤(x)∥2 + ∥aN (x)∥2∥a⊤(x)∥2

= n+ ∥a⊤(x)∥2,
where, for the normal component aN of a, we have used ∥aN∥2 = −1− ∥a⊤∥2, everywhere on Mn.

Consequently, using again Lemma 4.1 for the symmetric bilinear form given by (5.6), we achieve

(5.7)

∫
v∈Sn+p−2

a

∥∇⟨ψa, v⟩∥2(x) dVa =
n+ ∥a⊤(x)∥2

n+ p− 1
vol(Sn+p−2

),

which ends the proof of Lemma 5.1. □

6. Upper bounds for λ1

Theorem 6.1. [9, Thm 6.10]. Let Mn be a compact n-dimensional manifold and ψ : Mn → Ln+p
,

p ≥ 2, be a spacelike immersion. For each unit timelike vector a ∈ Ln+p
, the first non-trivial eigenvalue

λ1 of the Laplacian of the induced metric g on Mn via ψ satisfies

(PR) λ1 ≤ n

∫
Mn

∥Ha∥2 dµg

vol(Mn) +
1

n

∫
Mn

∥aT ∥2 dµg

,

where Ha := H + ⟨H, a⟩a is, at any point x ∈ Mn, the orthogonal projection of the vector H(x) on the
spacelike hyperplane a⊥. Moreover, the equality in (PR) holds if and only the equality holds in Lemma
5.1, i.e., if and only if there exists f(= fa) ∈ C∞(Mn) such that

∆ψ̃ + λ1ψ̃ = f a,

where ψ̃ := ψ − (1/vol(Mn)) c, with cj =
∫
Mn ψj dµg, j = 1, ..., n+ p.

Proof. To facilitate a comparison with the proof of Reilly’s theorem in Section 3, we will divide our
argument into several steps

Step 1. Our starting point is the inequality in Lemma 5.1 for ψ̃a, namely

(6.1) λ1

∫
Mn

∥ψ̃a∥2 dµg ≤ n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg.

Multiplying both members of inequality (6.1) by the non-negative quantity
∫
Mn ∥Ha∥2 dµg, we obtain(

n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg

) ∫
Mn

∥Ha∥2 dµg ≥

≥ λ1

∫
Mn

∥ψ̃a∥2 dµg

∫
Mn

∥Ha∥2 dµg

≥ λ1

(∫
Mn

∥ψ̃a∥ ∥Ha∥ dµg

)2

.

Using now L2-Schwarz inequality and Schwarz inequality in a⊥, we conclude

(6.2)
(
n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg

) ∫
Mn

∥Ha∥2 dµg ≥ λ1

(∫
Mn

⟨ψ̃a,Ha⟩ dµg

)2

.
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Step 2. In order to compute the right hand side of inequality (6.2), observe that

⟨ψ̃a,Ha⟩ = ⟨ψ̃,H⟩+ ⟨ψ̃, a⟩⟨H, a⟩
and recall the general formula

∆∥ψ̃∥2 = 2n
(
1 + ⟨ψ̃,H⟩

)
.

Therefore, we can write

(6.3)

∫
Mn

⟨ψ̃a,Ha⟩ dµg = −vol(Mn) +

∫
Mn

⟨ψ̃, a⟩⟨H, a⟩ dµg.

Finally, using
1

2
∆⟨ψ̃, a⟩2 = n ⟨ψ̃, a⟩⟨H, a⟩+ ∥a⊤∥2,

we can rewrite (6.3) as follows

(6.4)

∫
Mn

⟨ψ̃a,Ha⟩ dµg = −vol(Mn)− 1

n

∫
Mn

∥a⊤∥2 dµg .

Consequently, making use of (6.4), the integral inequality in (6.2) gives(
n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg

)∫
Mn

∥Ha∥2 dµg ≥

(6.5) ≥ λ1
n2

(
n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg

)2

,

that yields ∫
Mn

∥Ha∥2 dµg ≥ λ1
n2

(
n vol(Mn) +

∫
Mn

∥a⊤∥2 dµg

)
.

We conclude the proof by noting that equality holds in the previous inequality if and only if equality
holds in the integral inequality stated in Lemma 5.1. □

Corollary 6.2. For each unit timelike vector a ∈ Ln+p
, the first eigenvalue λ1 of the Laplacian for a

compact n-dimensional spacelike submanifold Mn in Lorentz-Minkowski spacetime Ln+p
, p ≥ 2, satisfies

λ1 ≤ n

∫
Mn

∥Ha∥2 dµg

vol(Mn)
.

The equality holds if and only if Mn factors through a spacelike affine hyperplane πa, and M
n is minimal

in some hypersphere in πa with radius
√
n/λ1.

Remark 6.3. In particular, if ψ(Mn) is contained in a spacelike hyperplane πa with unit timelike normal
vector a, then a⊤ = 0 and ⟨H, a⟩ = 0 hold, reproving Reilly’s inequality (Re) and the corresponding
characterization of the equality.

Finally, we observe that the family of inequalities (PR) is parametrized by the (n+ p− 1)-dimensional

unit hyperbolic space Hn+p−1 in Ln+p
. Consequently, we can collect all these inequalities to derive a

vector-independent upper bound, namely: for any compact n-dimensional spacelike submanifold Mn in

Lorentz-Minkowski spacetime Ln+p
, the first eigenvalue λ1 of the Laplacian of Mn satisfies

λ1 ≤ inf
a∈Hn+p−1

n

∫
Mn

∥Ha∥2 dµg

vol(Mn) +
1

n

∫
Mn

∥a⊤∥2 dµg

.
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