A NOTE ON EXTENSIONS OF OPEN SETS BY IDEALIZATIONS

AHU ACIKGOZ AND TAKASHI NOIRI

ABSTRACT. Recently, Abbas [1] has introduced and investigated the notion of h-open sets in a topological space. As a generalization of h-open sets, in [2] we introduced hI-open sets in an ideal topological space (X, τ, I) and obtained some properties of hI-open sets. In this paper, we introduce and investigate h^* -open sets on an ideal topological space. We show that h^* -open sets lie between open sets and hI-open sets and h^* -open sets are independent of h-open sets.

Mathematics Subject Classification (2010): 54A05, 54A10, 54C10

Key words: h-open, hI-open, h^* -open, h^* -continuous, h^* -irresolute, ideal topological space.

Article history: Received: June 10, 2023 Received in revised form: July 29, 2023 Accepted: July 31, 2023

1. ITRODUCTION

In 2020, Abbas [1] introduced the notion of *h*-open sets in a topological space (X, τ) as a generalization of open sets (see also [5]). Acikgoz et al. [3] showed that the family of all *h*-open sets in (X, τ) is a topology for X (see also [4]). They introduced *h*-local functions in an ideal topological space (X, τ, I) and obtained their fundamental properties. Quite recently, Acikgoz and Noiri [2] introduced and investigated the notions of *hI*-open sets, *hI*-continuous functions and *hI*-irresolute functions.

In this paper, we introduce h^* -open sets in (X, τ, I) , h^* -continuous functions and h^* -irresolute functions. We show that h-open sets and h^* -open sets are independent of each other and they both are stronger than hI-open sets. It is also shown that continuity and h^* -irresoluteness are independent of each other and they both imply h^* -continuity.

2. Preliminaries

Let (X, τ) be a topological space. The notion of ideals has been introduced in [7] and [8] and further investigated in [6].

Definition 2.1. A nonempty collection I of subsets of a set X is called an *ideal on* X if it satisfies the following two conditions:

(1) $A \in I$ and $B \subset A$ implies $B \in I$,

(2) $A \in I$ and $B \in I$ implies $A \cup B \in I$.

A topological space (X, τ) with an ideal I on X is called an *ideal topological space* and is denoted by (X, τ, I) . Let (X, τ, I) be an ideal topological space. For any subset A of X, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau : x \in U\}$, is called the *local function* of A with respect to τ and I [6]. Hereafter $A^*(I, \tau)$ is simply denoted by A^* . It is well known that $\operatorname{Cl}^*(A) = A \cup A^*$ defines a Kuratowski closure operator on X and the topology generated by Cl^* is denoted by τ^* .

Definition 2.2. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be (1) *h-open* [1] if $A \subset Int(A \cup V)$ for every $V \in \tau$ such that $\emptyset \neq V \neq X$, (2) *hI-open* [2] if $A \subset Int(A \cup Cl^*(V))$ for every $V \in \tau$ such that $\emptyset \neq V \neq X$.

Lemma 2.3. ([2]) Every h-open set is hI-open but the converse is not true.

Definition 2.4. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be

(1) *h*-continuous [1] if for every open set V in Y, $f^{-1}(V)$ is *h*-open in X,

(2) hI-continuous [2] if for every open set V in Y, $f^{-1}(V)$ is hI-open in X.

Lemma 2.5. ([2]) Every h-continuous function is hI-continuous but the converse is not true.

3. h^* -open sets

Definition 3.1. Let (X, τ, I) be an ideal topological space. A subset A of X is said to be (1) h^* -open if $A \subset Int(A \cup V^*)$ for every $V \in \tau$ such that $\emptyset \neq V \neq X$, (2) h^* -closed if $X \setminus A$ is h^* -open.

Let (X, τ, I) be an ideal topological space. I is said to be *codense* if $\tau \cap I = \emptyset$.

- **Lemma 3.2.** ([6]) Let (X, τ, I) be an ideal topological space. Then the following properties are equivalent: (1) I is codense;
 - (2) $V \subset V^*$ for every open set V of X.

Theorem 3.3. Let (X, τ, I) be an ideal topological space. Then the following properties hold:

(1) If I is codense, then h^* -open sets and hI-open sets are equivalent,

(2) The following diagram holds:

h-open sets \Rightarrow hI-open sets

(3) h-open sets and h^* -open sets are independent of each other.

Proof. (1) Let V be any open set of X such that $\emptyset \neq V \neq X$. Then, since I is codense, by Lemma 3.1 $V \subset V^*$ and $\operatorname{Cl}^*(V) = V \cup V^* = V^*$. Hence h^* -open sets and hI-open sets are equivalent.

(2) It is obvious that every open set is h-open and h^* -open. Since $\operatorname{Cl}^*(V) = V \cup V^*$, every h^* -open set is hI-open. It is known in [2] that every h-open set is hI-open.

(3) It follows from the following two examples that h-open sets and h^* -open sets are independent of each other.

Example 3.4. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{b, c\}\}, I = \{\emptyset, \{c\}\} \text{ and } A = \{a, b\}$. Then A is h^* -open and not h-open. For any open set $V \in \tau$ such that $\emptyset \neq V \neq X$, $V^* = X$ and $A \subset \text{Int}(A \cup V^*)$ for every open V such that $\emptyset \neq V \neq X$. Therefore, A is h^* -open. There exists an open set $\{b\}$ such that A is not contained in $\text{Int}(A \cup \{b\}) = \{b\}$. Hence A is not h-open.

Example 3.5. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, I = \{\emptyset, \{a\}\}$ and $A = \{b, c\}$. Then A is h-open and not h^* -open. For any open set $V \in \tau$ such that $\emptyset \neq V \neq X$, $\operatorname{Int}(A \cup V) = X$. Therefore, A is h-open. There exists an open set $\{a\}$ such that $\{a\}^* = \emptyset$ and A is not open. Therefore, A is not contained in $\operatorname{Int}(A \cup \{a\}^*) = \emptyset$. Hence A is not h^* -open.

Let (X, τ, I) be an ideal topological space. The family of all h^* -open sets in (X, τ, I) is denoted by $h^*O(X, I)$ or simply h^*O .

Theorem 3.6. Let (X, τ, I) be an ideal topological space. Then h^*O is a topology for X.

Proof. (1) It is obvious that $\emptyset, X \in h^*O$.

(2) Let $V_1, V_2 \in h^*O$. We show that $V_1 \cap V_2 \in h^*O$. Let G be any open set of X such that $\emptyset \neq G \neq X$. Since $V_1, V_2 \in h^*O$, $V_1 \subset \operatorname{Int}(V_1 \cup G^*)$ and $V_2 \subset \operatorname{Int}(V_2 \cup G^*)$. Hence $V_1 \cap V_2 \subset \operatorname{Int}(V_1 \cup G^*) \cap \operatorname{Int}(V_2 \cup G^*)$ $= Int\{(V_1 \cup G^*) \cap (V_2 \cup G^*)\} \subset Int\{(V_1 \cap V_2) \cup G^*)\}.$ Therefore, $V_1 \cap V_2 \in h^*O.$

(3) Let $V_{\alpha} \in h^*O$ for each $\alpha \in \Delta$ and G be any open set of X such that $\emptyset \neq G \neq X$. Then $V_{\alpha} \subset \operatorname{Int}(V_{\alpha} \cup G^*)$ for each $\alpha \in \Delta$. Then we have $V_{\alpha} \subset \operatorname{Int}(V_{\alpha} \cup G^*) \subset \operatorname{Int}((\cup_{\alpha \in \Delta} V_{\alpha}) \cup G^*)$ for each $\alpha \in \Delta$. Hence $\cup_{\alpha \in \Delta} V_{\alpha} \subset \operatorname{Int}((\cup_{\alpha \in \Delta} V_{\alpha}) \cup G^*)$. This shows that $\cup_{\alpha \in \Delta} V_{\alpha} \in h^*O$.

Definition 3.7. Let (X, τ, I) be an ideal topological space and A a subset of X. The set $\cup \{U : U \subset A, U \in h^*O(X, I)\}$ is called the h^* -interior of A and is denoted by $\operatorname{Int}_{h^*}(A)$.

Theorem 3.8. Let (X, τ, I) be an ideal topological space. Let A and B be subsets of X. Then the following properties hold:

(1) If $A \subset B$, then $\operatorname{Int}_{h^*}(A) \subset \operatorname{Int}_{h^*}(B)$, (2) $\operatorname{Int}_{h^*}(A) \subset A$ and $\operatorname{Int}_{h^*}(A)$ is h^* -open, (3) $\operatorname{Int}_{h^*}(\operatorname{Int}_{h^*}(A)) = \operatorname{Int}_{h^*}(A)$, (4) A is h^* -open if and only if $A = \operatorname{Int}_{h^*}(A)$, (5) $\operatorname{Int}_{h^*}(A) \cap \operatorname{Int}_{h^*}(B) = \operatorname{Int}_{h^*}(A \cap B)$, (6) $\operatorname{Int}_{h^*}(A) \cup \operatorname{Int}_{h^*}(B) \subset \operatorname{Int}_{h^*}(A \cup B)$.

Proof. The proof is obvious.

Definition 3.9. Let (X, τ, I) be an ideal topological space and A a subset of X. The set $\cap \{F : A \subset F, F \text{ is } h^*\text{-closed}\}$ is called the $h^*\text{-closure}$ of A and is denoted by $\operatorname{Cl}_{h^*}(A)$.

Theorem 3.10. Let (X, τ, I) be an ideal topological space. Let A and B be subsets of X. Then the following properties hold:

(1) If $A \subset B$, then $\operatorname{Cl}_{h^*}(A) \subset \operatorname{Cl}_{h^*}(B)$, (2) $A \subset \operatorname{Cl}_{h^*}(A)$ and $\operatorname{Cl}_{h^*}(A)$ is h^* -closed, (3) $\operatorname{Cl}_{h^*}(\operatorname{Cl}_{h^*}(A)) = \operatorname{Cl}_{h^*}(A)$, (4) A is h^* -closed if and only if $A = \operatorname{Cl}_{h^*}(A)$, (5) $\operatorname{Cl}_{h^*}(A \cap B) \subset \operatorname{Cl}_{h^*}(A) \cap \operatorname{Cl}_{h^*}(B)$, (6) $\operatorname{Cl}_{h^*}(A \cup B) = \operatorname{Cl}_{h^*}(A) \cup \operatorname{Cl}_{h^*}(B)$.

Proof. The proof is obvious.

Theorem 3.11. Let (X, τ, I) be an ideal topological space and A be a subset of X. Then the following properties hold:

(1) $X \setminus \operatorname{Cl}_{h^{\star}}(A) = \operatorname{Int}_{h^{\star}}(X \setminus A),$

(2) $X \setminus \operatorname{Int}_{h^*}(A) = \operatorname{Cl}_{h^*}(X \setminus A).$

Proof. The proof is obvious.

4. h^* -continuous functions

Definition 4.1. A function $f: (X, \tau, I) \to (Y, \sigma)$ is said to be h^* -continuous if for every open set V in Y $f^{-1}(V)$ is h^* -open in X.

Remark 4.2. For a function $f: (X, \tau, I) \to (Y, \sigma)$, the following implications hold:

 $\begin{array}{c} \text{continuity} \Rightarrow h^*\text{-continuity} \\ \Downarrow & \Downarrow \\ h\text{-continuity} \Rightarrow hI\text{-continuity} \end{array}$

In the above diagram, h^* -continuity and h-continuity are independent of each other as shown by the following examples.

Example 4.3. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, I = \{\emptyset, \{a\}\}, Y = \{a, b, c\} \text{ and } \sigma = \{\emptyset, Y, \{b, c\}\}.$ Then the identity function $f : (X, \tau, I) \to (Y, \sigma)$ is *h*-continuous and not *h*^{*}-continuous. Because, by Example 3.2, $\{b, c\}$ is *h*-open and not *h*^{*}-open in X. **Example 4.4.** Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{b, c\}\}, I = \{\emptyset, \{a\}\}, Y = X \text{ and } \sigma = \{\emptyset, Y, \{a, b\}\}.$ Then the identity function $f : (X, \tau, I) \to (Y, \sigma)$ is h^* -continuous and not h-continuous. Because, $\{a, b\}$ is h^* -open and not h-open in X.

Lemma 4.5. Let (X, τ, I) be an ideal topological space and A be a subset of X. Then the following properties are equivalent:

(1) A is h^* -closed;

(2) $\operatorname{Cl}(A \cap (X \setminus V^*)) \subset A$ for every open set V of X such that $\emptyset \neq V \neq X$.

Proof. (1) \Rightarrow (2): Let A be h^* -closed. Then $X \setminus A$ is h^* -open. By Definition 3.1, $(X \setminus A) \subset$ Int $\{(X \setminus A) \cup V^*\}$ for every open set V of X such that $\emptyset \neq V \neq X$. Therefore, $A \supset X \setminus$ Int $\{(X \setminus A) \cup V^*\} =$ Cl $[X \setminus \{(X \setminus A) \cup V^*\}] =$ Cl $[A \cap (X \setminus V^*)]$. Therefore, we obtain Cl $(A \cap (X \setminus V^*)) \subset A$.

 $(2) \Rightarrow (1)$: Suppose that $\operatorname{Cl}(A \cap (X \setminus V^*)) \subset A$ for every open set V of X such that $\emptyset \neq V \neq X$. Then $X \setminus A \subset X \setminus \operatorname{Cl}(A \cap (X \setminus V^*)) = \operatorname{Int}[X \setminus \{A \cap (X \setminus V^*)\}] = \operatorname{Int}[(X \setminus A) \cup V^*]$. Threfore, $X \setminus A$ is h^* -open and hence A is h^* -closed.

Theorem 4.6. For a function $f : (X, \tau, I) \to (Y, \sigma)$, the following properties are equivalent: (1) f is h^* -continuous;

(2) For each $x \in X$ and each $V \in \sigma$ such that $f(x) \in V$, there exists an h^* -open set U containing x such that $f(U) \subset V$;

(3) For each closed set F in Y, $f^{-1}(F)$ is h^* -closed;

(4) For each closed set F in Y, $\operatorname{Cl}(f^{-1}(F) \cap (X \setminus V^*)) \subset f^{-1}(F)$ for every open set V of X such that $\emptyset \neq V \neq X$;

(5) For each subset B of Y, $\operatorname{Cl}(f^{-1}(\operatorname{Cl}(B)) \cap (X \setminus V^*)) \subset f^{-1}(\operatorname{Cl}(B))$ for every open set V of X such that $\emptyset \neq V \neq X$;

(6) For each subset A of X, $f(Cl(A \cap (X \setminus V^*))) \subset Cl(f(A))$ for every open set V of X such that $\emptyset \neq V \neq X$;

(7) For each B of Y, $Cl_{h^*}(f^{-1}(B)) \subset f^{-1}(Cl(B));$

(8) For each B of Y, $f^{-1}(\operatorname{Int}(B)) \subset \operatorname{Int}_{h^{\star}}(f^{-1}(B))$.

Proof. (1) \Rightarrow (2): Let x be any point of X and V any open set of Y containing f(x). Set $U = f^{-1}(V)$, then U is an h^* -open set containing x such that $f(U) \subset V$.

(2) \Rightarrow (1): Let V be any open set of Y. For any $x \in f^{-1}(V)$, $f(x) \in V$. By (2), there exists an h^* -open set U_x containing x such that $f(U_x) \subset V$. Since $x \in U_x \subset f^{-1}(V)$, $f^{-1}(V) = \bigcup \{U_x : x \in f^{-1}(V)\}$ and $f^{-1}(V)$ is h^* -open in X.

 $(1) \Rightarrow (3)$: Let F be any closed set of Y. Then $Y \setminus F$ is open in Y and $X \setminus f^{-1}(F) = f^{-1}(Y \setminus F)$ is h^* -open in X. Hence $f^{-1}(F)$ is h^* -closed in X.

 $(3) \Rightarrow (4)$: Let F be any closed set in Y. Then $f^{-1}(F)$ is h^* -closed in X. By Lemma 4.1, $\operatorname{Cl}(f^{-1}(F) \cap (X \setminus V^*)) \subset f^{-1}(F)$ for every open set V of X such that $\emptyset \neq V \neq X$.

 $(4) \Rightarrow (5)$: Let B be any subset of Y. Then $\operatorname{Cl}(B)$ is closed in Y and by $(4) \operatorname{Cl}[f^{-1}(\operatorname{Cl}(B)) \cap (X \setminus V^*)) \subset f^{-1}(\operatorname{Cl}(B))$ for every open set V of X such that $\emptyset \neq V \neq X$.

 $(5) \Rightarrow (6)$: Let A be any subset of X. Let B = f(A) in (5). Then $\operatorname{Cl}[A \cap (X \setminus V^*)] \subset \operatorname{Cl}[f^{-1}(\operatorname{Cl}(f(A))) \cap (X \setminus V^*)] \subset f^{-1}(\operatorname{Cl}(f(A)))$. Hence $f(\operatorname{Cl}(A \cap (X \setminus V^*)) \subset \operatorname{Cl}(f(A))$ for every $V \in \tau$ such that $\emptyset \neq V \neq X$.

 $(6) \Rightarrow (1)$: Let V be any open set of Y. The $Y \setminus V$ is closed in Y. By (6), for every $V \in \tau$ such that $\emptyset \neq V \neq X$, $f(\operatorname{Cl}[f^{-1}(Y \setminus V) \cap (X \setminus V^*)] \subset \operatorname{Cl}(f(f^{-1}(Y \setminus V))) \subset \operatorname{Cl}(Y \setminus V) = Y \setminus V$ and hence $\operatorname{Cl}[f^{-1}(Y \setminus V) \cap (X \setminus V^*)] \subset f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$. Therefore, we have $f^{-1}(V) \subset X \setminus \operatorname{Cl}[f^{-1}(Y \setminus V) \cap (X \setminus V^*)] = \operatorname{Int}[X \setminus \{f^{-1}(Y \setminus V) \cap (X \setminus V^*)\}] = \operatorname{Int}(f^{-1}(V) \cup V^*)$. Therefore, $f^{-1}(V)$ is h^* -open.

 $(3) \Rightarrow (7)$: Let B be any subset of Y. Then $\operatorname{Cl}(B)$ is closed in Y and by (3) $f^{-1}(\operatorname{Cl}(B))$ is h^* -closed. Since $f^{-1}(B) \subset f^{-1}(\operatorname{Cl}(B))$, we obtain $\operatorname{Cl}_{h^*}(f^{-1}(B)) \subset f^{-1}(\operatorname{Cl}(B))$. $\begin{array}{l} (7) \Rightarrow (8): \text{ Let } B \text{ be any subset of } Y. \text{ Then we have } f^{-1}(\operatorname{Int}(B)) = f^{-1}(Y \setminus \operatorname{Cl}(Y \setminus B)) = X \setminus f^{-1}(\operatorname{Cl}(Y \setminus B)) \subset X \setminus \operatorname{Cl}_{h^{\star}}(f^{-1}(Y \setminus B)) = X \setminus \operatorname{Cl}_{h^{\star}}(X \setminus f^{-1}(B)) = \operatorname{Int}_{h^{\star}}(f^{-1}(B)). \\ (8) \Rightarrow (1): \text{ Let } V \text{ be any open set of } Y. \text{ By } (8), f^{-1}(V) \subset \operatorname{Int}_{h^{\star}}(f^{-1}(V)) \subset f^{-1}(V) \text{ and} \end{array}$

 $(8) \Rightarrow (1)$: Let V be any open set of Y. By (8), $f^{-1}(V) \subset \operatorname{Int}_{h^*}(f^{-1}(V)) \subset f^{-1}(V)$ and $\operatorname{Int}_{h^*}(f^{-1}(V)) = f^{-1}(V)$. This shows that $f^{-1}(V)$ is h^* -open.

Definition 4.7. A function $f: (X, \tau, I) \to (Y, \sigma, J)$ is said to be h^* -irresolute if for every h^* -open set V in Y $f^{-1}(V)$ is h^* -open in X.

Remark 4.8. For a function $f: (X, \tau, I) \to (Y, \sigma, J)$, the following implications hold:

continuity $\Rightarrow h^*$ -continuity \uparrow h^* -irresoluteness

Remark 4.9. In the above diagram, continuity and h^* irresoluteness are independent of each other as shown by the following two examples.

Example 4.10. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{b\}, \{b, c\}\}, I = \{\emptyset, \{a\}\}, Y = \{a, b, c\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}, J = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau, I) \to (Y, \sigma, J)$ is h^* -iresolute and not continuous.

Proof. 1) Since $\{b\}^* = \{b, c\}^* = X$, for every subset A of X, we have $A \subset \text{Int}(A \cup V^*)$ for every open set V such that $\emptyset \neq V \neq X$. Therefore, every subset of X is h^* -open in X. On the other hand, since $\{a, b\}^* = Y$, for every subset A of Y, we have $A \subset \text{Int}(A \cup V^*)$ for every open set V such that $\emptyset \neq V \neq Y$. Therefore, every subset of Y is h^* -open in Y. Threfore, the identity function f is h^* -irresolute.

2) There exists an open set $\{a, b\}$ such that $f^{-1}(\{a, b\}) = \{a, b\}$ is not open in X. Therefore, f is not continuous.

Example 4.11. Let $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a\}, \{a, b\}\}, I = \{\emptyset, \{a\}\}, Y = \{a, b, c\}$ and $\sigma = \{\emptyset, Y, \{a, b\}\}, J = \{\emptyset, \{c\}\}$. Then the identity function $f : (X, \tau, I) \to (Y, \sigma, J)$ is continuous and not h^* -iresolute.

Proof. 1) It is obvious that f is continuous.

2) By Example 4.3, $A = \{b, c\}$ is h^* -open in Y. By Example 3.2, $f^{-1}(A) = A = \{b, c\}$ is not h^* -open in X. Hence f is not h^* -iresolute.

Remark 4.12. In the diagram of Remark 4.2, the converse implications are not always true as shown by the following two examples.

Example 4.13. 1) By Example 4.2, every h^* -continuous function is not always h-continuous and hence every h^* -continuous function is not always continuous.

2) Suppose that h^* -continuity implies h^* -irresoluteness. Then continuity implies h^* -irresoluteness. This is contrary to Example 4.4.

Theorem 4.14. A function $f : (X, \tau, I) \to (Y, \sigma, J)$ is h^* -irresolute if and only if $f : (X, h^*O(X, I)) \to (Y, h^*O(Y, J))$ is continuous.

Proof. By Theorem 3.2, $h^*O(X, I)$ and $h^*O(Y, J)$ are topologies and the proof is obvious.

Theorem 4.15. For a function $f : (X, \tau, I) \to (Y, \sigma, J)$, the following properties are equivalent: (1) f is h^* -irresolute;

(2) For each $x \in X$ and each h^* -open set V in Y such that $f(x) \in V$, there exists an h^* -open set U containing x such that $f(U) \subset V$;

(3) For each h^* -closed set F in Y, $f^{-1}(F)$ is h^* -closed in X;

(4) For each B of Y, $Cl_{h^*}(f^{-1}(B)) \subset f^{-1}(Cl_{h^*}(B));$

(5) For each B of Y, $f^{-1}(Int_{h^*}(B)) \subset Int_{h^*}(f^{-1}(B))$.

Proof. The proof is similar to Theorem 4.1.

Definition 4.16. A function $f: (X, \tau) \to (Y, \sigma, J)$ is said to be

(1) h^* -closed if for every closed set F in X, f(F) is h^* -closed in Y,

(2) h^* -open if for every open set U in X, f(U) is h^* -open in Y.

Theorem 4.17. For a surjective function $f:(X,\tau) \to (Y,\sigma,J)$, the following properties hold:

(1) f is h^* -closed if and only if for each subset $S \subset Y$ and each open set U in X containing $f^{-1}(S)$, there exists an h^* -open set V in Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

(2) f is h^* -open if and only if for each subset $S \subset Y$ and each closed set U in X containing $f^{-1}(S)$, there exists an h^* -closed set V in Y such that $S \subset V$ and $f^{-1}(V) \subset U$.

Proof. (1) Let S be any subset of Y and U any open set in X containing $f^{-1}(S)$. Then $X \setminus U \subset X \setminus f^{-1}(S) = f^{-1}(Y \setminus S)$. Hence $f(X \setminus U) \subset Y \setminus S$ and $f(X \setminus U)$ is h^* -closed. Set $V = Y \setminus f(X \setminus U)$, then V is h^* -open in Y, $S \subset V$ and $f^{-1}(V) \subset U$.

Conversely, for any closed set F in X, set $U = Y \setminus f(F)$. Then $f^{-1}(U) \subset X \setminus F$ and $X \setminus F$ is open in X. Therefore, there exists an h^* -open set V in Y such that $U \subset V$ and $f^{-1}(V) \subset X \setminus F$. Since $U = Y \setminus f(F)$, $Y \setminus f(F) \subset V$ and $f^{-1}(Y \setminus f(F)) \subset f^{-1}(V) \subset X \setminus F$. Hence $F \subset X \setminus f^{-1}(V) \subset f^{-1}(f(F))$. Since f is surjective, $f(F) \subset Y \setminus V \subset f(F)$ and hence $f(F) = Y \setminus V$ is h^* -closed.

(2) The proof of (2) is similar with (1).

Remark 4.18. The assumption "surjective" in Theorem 4.4 is necessary for the proof of sufficiency.

References

- [1] F. Abbas, On H-open sets and H-continuous functions, J. Appl. Comput. Math. 9(1) (2020), 1–5.
- [2] A. Acikgoz and T. Noiri, Some extensions of open sets by idealizations, submitted.
- [3] A. Acikgoz, T. Noiri and B. Golpinar, On h-local functions in ideal topological spaces, Mathematica (Cluj) 65(88)(1) (2023), 3–11.
- [4] F.I. Dagci and H. Cakalli, A new topology via a topology, AIP Conference Proceedings, AIP Publishing 2483 (2022), 020003.
- [5] H. Cakalli and F.I. Dagci, On H-open sets and H-continuous functions, J. Appl. Comput. Math. 10(5) (2021).
- [6] D. Janković and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 295–310.
- [7] K. Kuratowski, *Topology*, Vol. 1, Academic Press, New York, 1966.
- [8] R. Vaidyanathswamy, The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51–61.

DEPARTMENT OF MATHEMATICS, BALIKESIR UNIVERSITY, 10145 BALIKESIR, TURKEY *Email address*: ahuacikgoz@gmail.com

2949-1, Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142, Japan *Email address:* t.noiri@nifty.com