SOME REMARKS ON RECTIFYING MATE CURVES

SEVER ACHIMESCU, DAN ANDREI TUDOR AND DANIEL TUDOR

ABSTRACT. We classify mate curves which are rectifying and also study rectifying Bertrand curves.

Mathematics Subject Classification (2010): 53A04 Key words: mate curves, rectifying curves.

Article history: Received: May 14, 2023 Received in revised form: July 19, 2023 Accepted: July 21, 2023

1. Preliminaries

Let $\rho: I \longrightarrow \mathbf{E}^3$ (where $I \subseteq \mathbf{R}$ is an interval and \mathbf{E}^3 is the 3-dimensional Euclidean space, endowed with the Euclidean scalar product, $\langle (x_1, x_2, x_3), (y_1, y_2, y_3) \rangle = x_1y_1 + x_2y_2 + x_3y_3$) be a Frenet curve and denote by s its canonical parameter, i.e. $||\dot{\rho}(s)|| = 1$; then ρ is a unit speed curve.

At any point $\rho(s)$, there exists a Frenet basis $\{t(s), n(s), b(s)\}$ such that the following Frenet formulae hold:

$$\begin{cases} t(s) = k(s)n(s), \\ \dot{n}(s) = -k(s)t(s) + \tau(s)b(s) \\ \dot{b}(s) = -\tau(s)n(s), \end{cases}$$

where $t(s) = \dot{\rho}(s)$ is the unit tangent vector field, n(s) is the unit principal normal vector field, b(s) is the unit binormal vector field, $b(s) = t(s) \times n(s)$, k(s) is the curvature of $\rho(s)$, $\tau(s)$ is the torsion of $\rho(s)$ and dot denotes the first derivative.

Remark that for a Frenet curve k(s) > 0, $\forall s \in I$. We suppose $\tau(s) \neq 0$, i.e. the curve is not a plane curve.

A space curve $\rho: I \longrightarrow \mathbf{E}^3$ whose position vector always lies in its rectifying plane, i.e.

$$\rho(s) = \gamma(s)t(s) + \mu(s)b(s),$$

for some functions γ and μ , is called a *rectifying curve* (see [1]). Such curves were recently characterized by their involutes and evolutes by some of the present authors ([2]).

Recall that two curves ρ and ρ^* are called *Bertrand* curves if they have common principal normal lines in corresponding points M on ρ and M^* on ρ^* ; then $n(s) = \pm n^*(s^*)$.

Motivated by the definition of Bertrand curves, in this paper we will consider mate space curves, $\rho(s)$ and $\rho^*(s^*)$, where s is the canonical parameter for ρ and, respectively, s^* is the canonical parameter of ρ^* , in the following situations (cases):

Case 1)
$$n(s) = \pm n^*(s^*)$$

Case 2) $n(s) = \pm b^*(s^*)$

Case 3) $n(s) = \pm t^*(s^*)$

- **Case 4)** $b(s) = \pm b^*(s^*)$
- **Case 5)** $b(s) = \pm n^*(s^*)$
- **Case 6)** $b(s) = \pm t^*(s^*)$
- **Case 7)** $t(s) = \pm t^*(s^*)$
- **Case 8)** $t(s) = \pm n^*(s^*)$

Case 9) $t(s) = \pm b^*(s^*),$

where $\{t^*(s^*), b^*(s^*), n^*(s^*)\}$ is the Frenet basis of ρ^* .

Remark 1.1. we consider in all cases 1)-9) common lines.

Obviously, the above case 1) is exactly the case of Bertrand curve mates.

From geometrical point of view, the Bertrand mates have the following two important properties:

Corollary 1.2. The distance between corresponding points M on ρ and M^{*} on ρ^* is constant.

Corollary 1.3. The angle between corresponding tangent lines t and t^* , in M, respectively M^* , is constant.

2. Rectifying mate curves

First we investigate the existence of such mate curves.

Theorem 2.1. The cases 3, 4, 6, 7) and 9) are not possible.

Proof. Case 3) $n(s) = \pm t^*(s^*)$ We can write

$$\rho^*(s^*) = \rho(s) + \alpha(s)n(s).$$

Then

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = (1 - \alpha(s)k(s))t(s) + \dot{\alpha}(s)n(s) + \alpha(s)\tau(s)b(s).$$

But $n(s) \perp t(s) \implies 1 - \alpha(s)k(s) = 0$ and $n(s) \perp b(s) \implies \alpha(s)\tau(s) = 0$. Because ρ is not a plane curve, in other words, $\tau \neq 0$, we get $\alpha(s) = 0$. Then we get 1 = 0, contradiction.

Therefore there do not exist ρ and ρ^* satisfying the case 3).

Case 4) $b(s) = \pm b^*(s^*)$ We write

$$\rho^*(s^*) = \rho(s) + \beta(s)b(s).$$

Then

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = \dot{\rho}(s) + \dot{\beta}(s)b(s) + \beta(s)\dot{b}(s) =$$
$$= t(s) + \dot{\beta}(s)b(s) - \beta(s)\tau(s)n(s).$$

But $\frac{d\rho^*(s^*)}{ds^*} = t^*(s^*)$, so $t^*(s^*) \perp b^*(s^*) \implies t^*(s^*) \perp b(s)$. Then $\beta(s) = 0 \implies \beta(s) = \beta = constant$, i.e., $\rho^*(s^*) = \rho(s) + \beta b(s)$. It follows that

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = t(s) - \beta\tau(s)n(s).$$

Calculating the scalar product with t(s) one gets 0 = 1, contradiction.

Case 6) $b(s) = \pm t^*(s^*)$

We have

$$\rho^*(s^*) = \rho(s) + \beta(s)b(s).$$

Then

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = \dot{\rho}(s) + \dot{\beta}(s)b(s) + \beta(s)\dot{b}(s),$$

which implies

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = t(s) + \dot{\beta}(s)b(s) + \beta(s)(-\tau(s)n(s)).$$

Calculating the scalar product with t(s), we get 0 = 1, contradiction.

Case 7) $t(s) = \pm t^*(s^*)$ We have

 $\rho^*(s^*) = \rho(s) + \gamma(s)t(s).$

Then

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = (1+\dot{\gamma}(s))t(s) + \gamma(s))\dot{t}(s),$$

or equivalently

$$t^*(s^*)\frac{ds^*}{ds} = (1 + \dot{\gamma}(s))t(s) + \gamma(s))k(s)n(s).$$

It follows that $\gamma(s)k(s) = 0$. Since $k(s) \neq 0$, it follows that $\gamma(s) = 0$, i.e. $\rho^* = \rho$.

Case 9) $t(s) = \pm b^*(s^*)$ Then

and

$$\rho^*(s^*) = \rho(s) + \gamma(s)t(s) = (s + c + \gamma(s))t(s) + \mu b(s)$$

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = (1+\dot{\gamma}s)t(s) + \gamma(s)k(s)n(s) = 0.$$

The same argument as in the case 7) implies $\rho^* = \rho$.

For the remaining cases, we ask the following question:

If ρ is a rectifying curve, when its mate, ρ^* , is a rectifying curve too? In case of a positive answer, under which conditions is the curve ρ^* rectifying?

Because ρ is rectifying, $\rho(s) = \lambda(s)t(s) + \mu(s)b(s)$. For cases 1), 2), ρ^* can be expressed by

$$\rho^*(s^*) = \rho(s) + \alpha(s)n(s).$$

Then

$$\rho^*(s^*) = \lambda(s)t(s) + \mu(s)b(s) + \alpha(s)n(s).$$

Similarly, for case 5), ρ^* can be expressed by

$$\rho^*(s^*) = \lambda(s)t(s) + \mu(s)b(s) + \beta(s)b(s) = \lambda(s)t(s) + [\mu(s) + \beta(s)]b(s).$$

For case8), ρ^* can be expressed by

$$\rho^*s^*) = \lambda(s)t(s) + \mu(s)b(s) + \gamma(s)t(s) = [\lambda(s) + \gamma(s)]t(s) + \mu(s)b(s).$$

Remark 2.2. From [1], one has $\lambda(s) = s + c$, where c is a constant and $\mu(s) = \mu$ =constant, i.e. ρ will be written as

$$\rho(s) = (s+c)t(s) + \mu b(s).$$

Case 1) $n(s) = \pm n^*(s^*)$ (Bertrand curves) One can write $\rho^*(s^*) = \rho(s) + \alpha(s)n(s) = (s+c)t(s) + \mu b(s) + \alpha(s)n(s)$. By differentiation, we obtain

.

Case

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = \dot{\rho}(s) + \dot{\alpha}(s)n(s) + \alpha(s)\dot{n}(s) =$$
$$= t(s) + \dot{\alpha}(s)n(s) + \alpha(s)\left[-k(s)t(s) + \tau(s)b(s)\right] =$$
$$= (1 - \alpha(s)k(s))t(s) + \dot{\alpha}(s)n(s) + \alpha(s)\tau(s)b(s).$$

But $\frac{d\rho^*(s^*)}{ds^*} = t^*(s^*)$ which is orthogonal to $n^*(s^*)$, i.e. $t^*(s^*)$ is orthogonal to n(s). Then $\dot{\alpha}(s) = 0 \implies \alpha(s) = \alpha = constant \neq 0$ ($\alpha = 0 \implies \rho^*(s^*) = \rho(s)$, α is the distance between corresponding points M and M^*).

We obtain $\rho^*(s^*) = (s+c)t(s) + \mu b(s) + \alpha n(s)$. Then $\langle \rho^*(s^*), n^*(s^*) \rangle = \pm \langle \rho^*(s^*), n(s) \rangle = \alpha \neq 0$. It follows that in Case 1), ρ^* is not a rectifying curve.

Remark 2.3. $\alpha(s) = \alpha = constant$ implies the distance between the corresponding points is constant (see Corollary 1.2).

Remark 2.4. For Bertrand curves, $\angle(t,t^*) = constant$ (see [3] and Corollary 1.3).

2)
$$n(s) = \pm b^*(s^*)$$
$$\rho^*(s^*) = \rho(s) + \alpha(s)n(s) \implies$$
$$\frac{d\rho^*(s^*)}{ds^*} \frac{ds^*}{ds} = (1 - \alpha(s)k(s))t(s) + \dot{\alpha}(s)n(s) + \alpha(s)\tau(s)b(s).$$

Therefore, ρ^* is always a rectifying curve.

Remark 2.5. $\alpha(s) = \alpha$ = constant implies that the distance between the corresponding points is constant.

Case 5) $b(s) = \pm n^*(s^*)$

$$\rho^*(s^*) = \rho(s) + \beta(s)b(s) \Longrightarrow$$
$$\frac{d\rho^*(s^*)}{ds^*} \frac{ds^*}{ds} = \dot{\rho}(s) + \dot{\beta}(s)b(s) + \beta(s)\dot{b}(s) =$$
$$= t(s) + \dot{\beta}(s)b(s) - \beta(s)\tau(s)n(s).$$

But $t^*(s^*) \perp n^*(s^*) \implies t^*(s^*) \perp b(s) \implies \dot{\beta}(s) = 0 \implies \beta(s) = \beta = constant.$ This implies $\rho^*(s^*) = (s+c)t(s) + \mu b(s) + \beta b(s) = (s+c)t(s) + (\mu+\beta)b(s) = (s+c)t(s) \pm (\mu+\beta)n^*(s^*).$ Therefore, $\langle \rho^*(s^*), n^*(s^*) \rangle = \pm (\mu+\beta).$ It follows that ρ^* is rectifying if and only if $\beta = -\mu \Leftrightarrow \rho^*(s) = (s+c)t(s).$

Case 8) $t(s) = \pm n^*(s^*)$ Then

$$\rho^*(s^*) = \rho(s) + \gamma(s)t(s) = (s + c + \gamma(s))t(s) + \mu b(s)$$

and

$$\frac{d\rho^*(s^*)}{ds^*}\frac{ds^*}{ds} = (1 + \dot{\gamma}(s))t(s) + \gamma(s)k(s)n(s) = 0.$$

$$= (1 + \dot{\gamma}(s))t(s)(\pm n^*(s^*)) + (sk(s) + ck(s) + \gamma(s)k(s) - \mu\tau(s))n(s)$$
$$\implies 1 + \dot{\gamma}(s) = 0 \implies \gamma(s) = -s + d.$$

Thus, $\rho^*(s^*) = (c+d)t(s) + \mu b(s)$.

Computing the inner product, we have $\langle \rho^*(s^*), n^*(s^*) \rangle = \pm (c+d) + \mu < b(s), \pm n^*(s^*) \rangle = \pm (c+d).$ So, ρ^* is rectifying $\Leftrightarrow c + d = 0$, which implies $\gamma(s) = -s - c$.

To conclude this section and give answers to our question, we summarize the results in the following classification theorem.

Theorem 2.6. Let $\rho: I \longrightarrow \mathbf{E}^3$ be a rectifying curve. Then:

i) Its mate ρ^* is not rectifying in case 1).

ii) Its mate ρ^* is always rectifying in case 2).

iii) Its mate ρ^* is rectifying in case 5) if and only if $\rho^*(s) = (s+c)t(s)$, with c a real constant.

iv) Its mate ρ^* is rectifying in case 8) if and only if $\rho^*(s^*) = \mu b(s)$, with μ a real constant.

3. Rectifying Bertrand curves

As we have seen in the previous section, if ρ is rectifying then its Bertrand mate ρ^* is not rectifying, i.e. they can not be both rectifying.

A natural question is the following: if ρ and ρ^* are Bertrand curves, is it possible for one of them to be rectifying?

To answer this, we use once more Theorem 2 from [1] (see the section 2, proof of case 4), for its statement).

On the other hand, it is known (see [3]) that ρ and ρ^* are Bertrand if there exist α , β constants such that $\alpha k(s) + \beta \tau(s) = 1$, with $\alpha \neq 0$.

Then $\frac{1}{k(s)} = \alpha + \beta(c_1s + c_2) = \beta c_1s + \alpha + \beta c_2$. Therefore,

$$k(s) = \frac{1}{As + \beta} \implies \tau(s) = \frac{c_1 s + c_2}{\beta c_1 s + \alpha + \beta c_2},$$

where $c_1 = \frac{1}{\mu}$, $c_2 = \frac{c}{\mu}$, $\mu \neq 0$. Without loosing the generality, one can choose $\mu = 1$; this implies $c_1 = 1$; $c = 1 \implies c_2 = 1$ and $\alpha = \beta = 1$. Then $k(s) = \frac{1}{s+2}$ and $\tau(s) = \frac{s+1}{s+2}$. It follows that we are looking for $\rho(s)$ with $\dot{\rho}(s) = t(s)$ and such that t(s), n(s), b(s) are related by:

(3.1)
$$\begin{cases} \dot{t}(s) = \frac{1}{s+2}n(s), \\ \dot{n}(s) = -\frac{1}{s+2}t(s) + (1 - \frac{1}{s+2})b(s), \\ \dot{b}(s) = (-1 + \frac{1}{s+2})n(s). \end{cases}$$

By using the fundamental theorem of theory of curves, it follows that this system has an unique solution $\{t(s), n(s), b(s)\}$ up to some initial conditions (we also refer to the existence and uniqueness of the solutions of a system of differential equations).

Subtracting the first and second equation, we obtain

(3.2)
$$\dot{t}(s) - \dot{b}(s) = n(s),$$

and then

 $\dot{n}(s) = \ddot{t}(s) - \ddot{b}(s),$ (3.3)

where double dots indicate the second derivative.

From the first equations of the system and from the relations (3.2) and (3.3), we obtain:

(3.4)
$$\begin{cases} (1 - \frac{1}{s+2})\dot{t}(s) + \frac{1}{s+2}\dot{b}(s) = 0, \\ \\ \ddot{t}(s) - \ddot{b}(s) = -\frac{1}{s+2}t(s) + (1 - \frac{1}{s+2})b(s). \end{cases}$$

From the first equation of (3.4), we get

(3.5) $\dot{t}(s) - \dot{b}(s) = (s+2)\dot{t}(s).$

Using (3.5) in the second equation of the system (3.4), we have

$$(3.6) \qquad \dot{t}(s) + (s+2)\ddot{t}(s) = -\frac{1}{s+2}t(s) + \frac{s+1}{s+2}b(s) \Rightarrow b(s) = \frac{(s+2)^2}{s+1}\ddot{t}(s) + \frac{s+2}{s+1}\dot{t}(s) + \frac{1}{s+1}t(s).$$

By using (3.6) in the first equation of the system (3.4), we get

$$\frac{s+1}{s+2}\dot{t}(s) + \frac{1}{s+2}\left[\left(\frac{(s+2)^2}{s+1}\right)'\ddot{t}(s) + \frac{(s+2)^2}{s+1}\ddot{t}(s) + (\frac{s+2}{s+1})'\dot{t}(s) + \frac{s+2}{s+1}\ddot{t}(s) + (\frac{1}{s+1})'t(s) + \frac{1}{s+1}\dot{t}(s)\right] = 0,$$

where three dots denote the third derivative.

By simplifying the terms, one obtains

(3.7)
$$(s+1)(s+2)^2 \ddot{t}(s) + (2s+1)(s+2)\ddot{t}(s) + [(s+1)^3 + s]\dot{t}(s) - t(s) = 0.$$

As a conclusion, the answer of the question posed at the beginning of this section is given by the following

Theorem 3.1 Let $\rho : I \longrightarrow \mathbf{E}^3$ be a Bertrand curve. Then it is rectifying if and only if its tangent unit vector field t(s) satisfies the differential equation (3.7).

Remark 3.2. The solutions of the equation (3.7) determine a 3-dimensional linear space. The components of the vector t belong to this linear space.

Aknowledgements. The authors thank to Prof. Dr. Ghiocel Groza for the valuable suggestions.

References

- B.Y. Chen, When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon. 110 (2003), 147-152.
- [2] M. Jianu, S. Achimescu, L. Dăus, A. Mihai, O.-A. Roman and D. Tudor, Characterization of rectifying curves by their involutes and evolutes, Mathematics 9 (2021), 3077.
- [3] M.M. Lipschutz, Schaum's Outline of Theory and Problems of Differential Geometry, McGraw-Hill Book Company, NY, USA, 1969.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF CIVIL EN-GINEERING BUCHAREST, BUCHAREST, ROMANIA

Email address: sever.achimescu@utcb.ro

FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, VRIJE UNIVERSITEIT AMSTERDAM, AMSTERDAM, NETHERLANDS

Email address: d.tudor@student.vu.nl

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, TECHNICAL UNIVERSITY OF CIVIL EN-GINEERING BUCHAREST, BUCHAREST, ROMANIA

Email address: daniel.tudor@utcb.ro