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1. Preliminaries

Let ρ : I −→ E3 (where I ⊆ R is an interval and E3 is the 3-dimensional Euclidean space, endowed
with the Euclidean scalar product, < (x1, x2, x3), (y1, y2, y3) > = x1y1 + x2y2 + x3y3) be a Frenet curve
and denote by s its canonical parameter, i.e. ||ρ̇(s)|| = 1; then ρ is a unit speed curve.

At any point ρ(s), there exists a Frenet basis {t(s), n(s), b(s)} such that the following Frenet formulae
hold: 

ṫ(s) = k(s)n(s),

ṅ(s) = −k(s)t(s) + τ(s)b(s),

ḃ(s) = −τ(s)n(s),

where t(s) = ρ̇(s) is the unit tangent vector field, n(s) is the unit principal normal vector field, b(s) is
the unit binormal vector field, b(s) = t(s)× n(s), k(s) is the curvature of ρ(s), τ(s) is the torsion of ρ(s)
and dot denotes the first derivative.

Remark that for a Frenet curve k(s) > 0, ∀s ∈ I. We suppose τ(s) 6= 0, i.e. the curve is not a plane
curve.

A space curve ρ : I −→ E3 whose position vector always lies in its rectifying plane, i.e.

ρ(s) = γ(s)t(s) + µ(s)b(s),

for some functions γ and µ, is called a rectifying curve (see [1]). Such curves were recently characterized
by their involutes and evolutes by some of the present authors ([2]).

Recall that two curves ρ and ρ∗ are called Bertrand curves if they have common principal normal
lines in corresponding points M on ρ and M∗ on ρ∗; then n(s) = ±n∗(s∗).

Motivated by the definition of Bertrand curves, in this paper we will consider mate space curves, ρ(s)
and ρ∗(s∗), where s is the canonical parameter for ρ and, respectively, s∗ is the canonical parameter of
ρ∗, in the following situations (cases):

Case 1) n(s) = ±n∗(s∗)
Case 2) n(s) = ±b∗(s∗)
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Case 3) n(s) = ±t∗(s∗)
Case 4) b(s) = ±b∗(s∗)
Case 5) b(s) = ±n∗(s∗)
Case 6) b(s) = ±t∗(s∗)
Case 7) t(s) = ±t∗(s∗)
Case 8) t(s) = ±n∗(s∗)
Case 9) t(s) = ±b∗(s∗),
where {t∗(s∗), b∗(s∗), n∗(s∗)} is the Frenet basis of ρ∗.

Remark 1.1. we consider in all cases 1)-9) common lines.

Obviously, the above case 1) is exactly the case of Bertrand curve mates.

From geometrical point of view, the Bertrand mates have the following two important properties:

Corollary 1.2. The distance between corresponding points M on ρ and M∗ on ρ∗ is constant.

Corollary 1.3. The angle between corresponding tangent lines t and t∗, in M , respectively M∗, is
constant.

2. Rectifying mate curves

First we investigate the existence of such mate curves.

Theorem 2.1. The cases 3), 4), 6), 7) and 9) are not possible.

Proof. Case 3) n(s) = ±t∗(s∗)
We can write

ρ∗(s∗) = ρ(s) + α(s)n(s).

Then
dρ∗(s∗)

ds∗
ds∗

ds
= (1− α(s)k(s))t(s) + α̇(s)n(s) + α(s)τ(s)b(s).

But n(s) ⊥ t(s) =⇒ 1 − α(s)k(s) = 0 and n(s) ⊥ b(s) =⇒ α(s)τ(s) = 0. Because ρ is not a plane
curve, in other words, τ 6= 0, we get α(s) = 0. Then we get 1 = 0, contradiction.

Therefore there do not exist ρ and ρ∗ satisfying the case 3).

Case 4) b(s) = ±b∗(s∗)
We write

ρ∗(s∗) = ρ(s) + β(s)b(s).

Then
dρ∗(s∗)

ds∗
ds∗

ds
= ρ̇(s) + β̇(s)b(s) + β(s)ḃ(s) =

= t(s) + β̇(s)b(s)− β(s)τ(s)n(s).

But dρ∗(s∗)
ds∗ = t∗(s∗), so t∗(s∗) ⊥ b∗(s∗) =⇒ t∗(s∗) ⊥ b(s).

Then β̇(s) = 0 =⇒ β(s) = β = constant, i.e., ρ∗(s∗) = ρ(s) + βb(s)
It follows that

dρ∗(s∗)

ds∗
ds∗

ds
= t(s)− βτ(s)n(s).

Calculating the scalar product with t(s) one gets 0 = 1, contradiction.

Case 6) b(s) = ±t∗(s∗)
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We have
ρ∗(s∗) = ρ(s) + β(s)b(s).

Then
dρ∗(s∗)

ds∗
ds∗

ds
= ρ̇(s) + β̇(s)b(s) + β(s)ḃ(s),

which implies
dρ∗(s∗)

ds∗
ds∗

ds
= t(s) + β̇(s)b(s) + β(s)(−τ(s)n(s)).

Calculating the scalar product with t(s), we get 0 = 1, contradiction.

Case 7) t(s) = ±t∗(s∗)
We have

ρ∗(s∗) = ρ(s) + γ(s)t(s).

Then
dρ∗(s∗)

ds∗
ds∗

ds
= (1 + γ̇(s))t(s) + γ(s))ṫ(s),

or equivalently

t∗(s∗)
ds∗

ds
= (1 + γ̇(s))t(s) + γ(s))k(s)n(s).

It follows that γ(s))k(s) = 0. Since k(s) 6= 0, it follows that γ(s) = 0, i.e. ρ∗ = ρ.

Case 9) t(s) = ±b∗(s∗)
Then

ρ∗(s∗) = ρ(s) + γ(s)t(s) = (s+ c+ γ(s))t(s) + µb(s)

and
dρ∗(s∗)

ds∗
ds∗

ds
= (1 + γ̇s))t(s) + γ(s)k(s)n(s) = 0.

The same argument as in the case 7) implies ρ∗ = ρ.
�

For the remaining cases, we ask the following question:

If ρ is a rectifying curve, when its mate, ρ∗, is a rectifying curve too? In case of a positive
answer, under which conditions is the curve ρ∗ rectifying?

Because ρ is rectifying, ρ(s) = λ(s)t(s) + µ(s)b(s).
For cases 1), 2), ρ∗ can be expressed by

ρ∗(s∗) = ρ(s) + α(s)n(s).

Then
ρ∗(s∗) = λ(s)t(s) + µ(s)b(s) + α(s)n(s).

Similarly, for case 5), ρ∗ can be expressed by

ρ∗(s∗) = λ(s)t(s) + µ(s)b(s) + β(s)b(s) = λ(s)t(s) + [µ(s) + β(s)]b(s).

For case8), ρ∗ can be expressed by

ρ∗s∗) = λ(s)t(s) + µ(s)b(s) + γ(s)t(s) = [λ(s) + γ(s)] t(s) + µ(s)b(s).

Remark 2.2. From [1], one has λ(s) = s + c, where c is a constant and µ(s) = µ =constant, i.e. ρ
will be written as

ρ(s) = (s+ c)t(s) + µb(s).

Case 1) n(s) = ±n∗(s∗) (Bertrand curves)
One can write ρ∗(s∗) = ρ(s) + α(s)n(s) = (s+ c)t(s) + µb(s) + α(s)n(s).
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By differentiation, we obtain

dρ∗(s∗)

ds∗
ds∗

ds
= ρ̇(s) + α̇(s)n(s) + α(s)ṅ(s) =

.
= t(s) + α̇(s)n(s) + α(s) [−k(s)t(s) + τ(s)b(s)] =

= (1− α(s)k(s)) t(s) + α̇(s)n(s) + α(s)τ(s)b(s).

But dρ∗(s∗)
ds∗ = t∗(s∗) which is orthogonal to n∗(s∗), i.e. t∗(s∗) is orthogonal to n(s). Then α̇(s) =

0 =⇒ α(s) = α = constant 6= 0 (α = 0 =⇒ ρ∗(s∗) = ρ(s), α is the distance between corresponding
points M and M∗).

We obtain ρ∗(s∗) = (s+ c)t(s) + µb(s) + αn(s).
Then < ρ∗(s∗), n∗(s∗) > = ± < ρ∗(s∗), n(s) > = α 6= 0.
It follows that in Case 1), ρ∗ is not a rectifying curve.

Remark 2.3. α(s) = α = constant implies the distance between the corresponding points is constant
(see Corollary 1.2).

Remark 2.4. For Bertrand curves, ∠(t, t∗) = constant (see [3] and Corollary 1.3).

Case 2) n(s) = ±b∗(s∗)
ρ∗(s∗) = ρ(s) + α(s)n(s) =⇒

dρ∗(s∗)

ds∗
ds∗

ds
= (1− α(s)k(s))t(s) + α̇(s)n(s) + α(s)τ(s)b(s).

But dρ∗(s∗)
ds∗ = t∗(s∗) orthogonal to b∗(s∗), i.e. orthogonal to n(s) =⇒ α̇(s) = 0 =⇒ α(s) = α =

constant =⇒ ρ∗(s∗) = (s + c)t(s) + µb(s) + αn(s) =⇒ < ρ∗(s∗), n∗(s∗) > =< (s + c)t(s) + µb(s) +
αn(s), n∗(s∗) > = (s + c) < t(s), n∗(s∗) > +µ < b(s), n∗(s∗) > +α < n(s), n∗(s∗) > = (s + c) <
t(s), n∗(s∗) > +µ < b(s), n∗(s∗) > +α < ±b∗(s∗), n∗(s∗) > = − 1

τ∗(s∗) < t(s), b∗(s∗) > − µ
τ∗(s∗) <

b(s), b∗(s∗) > = ± ds
ds∗

1
τ∗(s∗) · [(s+ c)k(s)− µτ(s)] = 0, by [1].

Therefore, ρ∗ is always a rectifying curve.

Remark 2.5. α(s) = α = constant implies that the distance between the corresponding points is
constant.

Case 5) b(s) = ±n∗(s∗)
ρ∗(s∗) = ρ(s) + β(s)b(s) =⇒

dρ∗(s∗)

ds∗
ds∗

ds
= ρ̇(s) + β̇(s)b(s) + β(s)ḃ(s) =

= t(s) + β̇(s)b(s)− β(s)τ(s)n(s).

But t∗(s∗) ⊥ n∗(s∗) =⇒ t∗(s∗) ⊥ b(s) =⇒ β̇(s) = 0 =⇒ β(s) = β = constant.
This implies ρ∗(s∗) = (s+c)t(s)+µb(s)+βb(s) = (s+c)t(s)+(µ+β)b(s) = (s+c)t(s)±(µ+β)n∗(s∗).
Therefore, < ρ∗(s∗), n∗(s∗) > = ±(µ+ β).
It follows that ρ∗ is rectifying if and only if β = −µ⇔ ρ∗(s) = (s+ c)t(s).

Case 8) t(s) = ±n∗(s∗)
Then

ρ∗(s∗) = ρ(s) + γ(s)t(s) = (s+ c+ γ(s))t(s) + µb(s)

and
dρ∗(s∗)

ds∗
ds∗

ds
= (1 + γ̇(s))t(s) + γ(s)k(s)n(s) = 0.
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= (1 + γ̇(s))t(s)(±n∗(s∗)) + (sk(s) + ck(s) + γ(s)k(s)− µτ(s))n(s)

=⇒ 1 + γ̇(s) = 0 =⇒ γ(s) = −s+ d.

Thus, ρ∗(s∗) = (c+ d)t(s) + µb(s).
Computing the inner product, we have < ρ∗(s∗), n∗(s∗) > = ±(c+d)+µ < b(s),±n∗(s∗) > = ±(c+d).
So, ρ∗ is rectifying ⇔ c+ d = 0, which implies γ(s) = −s− c.

To conclude this section and give answers to our question, we summarize the results in the following
classification theorem.

Theorem 2.6. Let ρ : I −→ E3 be a rectifying curve. Then:
i) Its mate ρ∗ is not rectifying in case 1).
ii) Its mate ρ∗ is always rectifying in case 2).
iii) Its mate ρ∗ is rectifying in case 5) if and only if ρ∗(s) = (s+ c)t(s), with c a real constant.
iv) Its mate ρ∗ is rectifying in case 8) if and only if ρ∗(s∗) = µb(s), with µ a real constant.

3. Rectifying Bertrand curves

As we have seen in the previous section, if ρ is rectifying then its Bertrand mate ρ∗ is not rectifying,
i.e. they can not be both rectifying.

A natural question is the following: if ρ and ρ∗ are Bertrand curves, is it possible for one of
them to be rectifying?

To answer this, we use once more Theorem 2 from [1] (see the section 2, proof of case 4), for its
statement).

On the other hand, it is known (see [3]) that ρ and ρ∗ are Bertrand if there exist α, β constants such
that αk(s) + βτ(s) = 1, with α 6= 0.

Then 1
k(s) = α+ β(c1s+ c2) = βc1s+ α+ βc2. Therefore,

k(s) =
1

As+ β
=⇒ τ(s) =

c1s+ c2
βc1s+ α+ βc2

,

where c1 = 1
µ , c2 = c

µ , µ 6= 0.

Without loosing the generality, one can choose µ = 1; this implies c1 = 1 ; c = 1 =⇒ c2 = 1 and
α = β = 1. Then k(s) = 1

s+2 and τ(s) = s+1
s+2 .

It follows that we are looking for ρ(s) with ρ̇(s) = t(s) and such that t(s), n(s), b(s) are related by:

(3.1)



ṫ(s) = 1
s+2n(s),

ṅ(s) = − 1
s+2 t(s) + (1− 1

s+2 )b(s),

ḃ(s) = (−1 + 1
s+2 )n(s).

By using the fundamental theorem of theory of curves, it follows that this system has an unique
solution {t(s), n(s), b(s)} up to some initial conditions (we also refer to the existence and uniqueness of
the solutions of a system of differential equations).

Subtracting the first and second equation, we obtain

(3.2) ṫ(s)− ḃ(s) = n(s),

and then

(3.3) ṅ(s) = ẗ(s)− b̈(s),
where double dots indicate the second derivative.
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From the first equations of the system and from the relations (3.2) and (3.3), we obtain:

(3.4)


(1− 1

s+2 )ṫ(s) + 1
s+2 ḃ(s) = 0,

ẗ(s)− b̈(s) = − 1
s+2 t(s) + (1− 1

s+2 )b(s).

From the first equation of (3.4), we get

(3.5) ṫ(s)− ḃ(s) = (s+ 2)ṫ(s).

Using (3.5) in the second equation of the system (3.4), we have

(3.6) ṫ(s) + (s+ 2)ẗ(s) = − 1

s+ 2
t(s) +

s+ 1

s+ 2
b(s)⇒ b(s) =

(s+ 2)2

s+ 1
ẗ(s) +

s+ 2

s+ 1
ṫ(s) +

1

s+ 1
t(s).

By using (3.6) in the first equation of the system (3.4), we get

s+ 1

s+ 2
ṫ(s)+

1

s+ 2

[(
(s+ 2)2

s+ 1

)′
ẗ(s) +

(s+ 2)2

s+ 1

...
t (s) + (

s+ 2

s+ 1
)′ṫ(s) +

s+ 2

s+ 1
ẗ(s) + (

1

s+ 1
)′t(s) +

1

s+ 1
ṫ(s)

]
= 0,

where three dots denote the third derivative.
By simplifying the terms, one obtains

(3.7) (s+ 1)(s+ 2)2
...
t (s) + (2s+ 1)(s+ 2)ẗ(s) +

[
(s+ 1)3 + s

]
ṫ(s)− t(s) = 0.

As a conclusion, the answer of the question posed at the beginning of this section is given by the
following

Theorem 3.1 Let ρ : I −→ E3 be a Bertrand curve. Then it is rectifying if and only if its tangent
unit vector field t(s) satisfies the differential equation (3.7).

Remark 3.2. The solutions of the equation (3.7) determine a 3-dimensional linear space. The
components of the vector t belong to this linear space.
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