NON-EXISTENCE OF A PARALLEL 2-FORM ON A REGULAR LORENTZIAN α-SASAKIAN MANIFOLD WITH COEFFICIENT α ENDOWED WITH RICCI SOLITON

LOVEJOY S. DAS

Abstract

In 1926, Levy [11] had proved that a second order parallel non-singular tensor on a space of constant curvature is a constant multiple of the metric tensor. Sharma [14] has proved that a second order parallel tensor in a Kaehler space of constant holomorphic sectional curvature is a linear combination with constant coefficient of the Kaehlerian metric and the fundamental 2-form. In this paper, we have shown that a second order symmetric parallel tensor on a regular Lorentzian α-Sasakian manifold (briefly L α-Sasakian) with coefficient α (non zero scalar function) is a constant multiple of the associated metric tensor and we have also proved that there does not exist a non zero parallel 2-form on a regular Lorentzian α-Sasakian manifold with a coefficient α.

Mathematics Subject Classification (2010): 53C15, 53C25, 53C40
Key words: Second order parallel tensor, Lorentzian α-Sasakian manifold with a coefficient α, Ricci Solitons, parallel 2-form.

Article history:

Received: May 22, 2023
Received in revised form: July 6, 2023
Accepted: July 8, 2023

1. Introduction

On 1923, Eisenhart [9] showed that a Riemannian manifold admitting a second order symmetric parallel tensor other than a constant multiple of metric is reducible. In 1926 Levy [11] obtained the necessary and sufficient conditions for the existence of such tensors. Sharma [14] has generalized Levy's result by showing that a second order parallel (not necesarily symmetric and non-singular) tensor on an n-dimensional ($n>2$) space of constant curvature is a constant multiple of the metric tensor. Recently the author [5] has proved that on a Para r-Sasakian manifold with a coefficient α, a second order symmetric parallel tensor is a constant multple of the associated positive definite Riemannian metric tensor. In this paper, we have defined a regular Lorentzian α-Sasakian manifold with a coefficient α (non-zero scalar function) and have proved the following theorems:

Theorem 1.1. On a regular Lorentzian α-Sasakian manifold with a coefficient α, a second order symmetric parallel tensor is a constant multple of the associated metric tensor.

Theorem 1.2. On a regular Lorentzian α-Sasakian manifold with coefficient α, there is no non zero parallel 2-forms.

Motivated by the works of Hamilton [10] towards the solution of the Poincare conjecture about the characterization of 3-sphere, many geometers have engaged themselves in providing the solutions of solitons of the Ricci flow.

The notion of a soliton structure on the Riemannian manifold (M, g) is the choice of a smooth vector field V on M and a real constant λ satisfying the structural requirement.

$$
\begin{equation*}
£_{V} g+2 S+2 \lambda g=0 \tag{1.1}
\end{equation*}
$$

where S is the Ricci tensor of the metric g and $£_{V} g$ is the Lie Derivative in the direction of V and λ is referred to as the solition constant. The Ricci soliton is called expanding, steady or shinking if $\lambda>0, \lambda=0$ or $\lambda<0$ respectively. In this paper, we prove that the tensor field $£_{V} g+2 S$ on a Lorentzian α-Sasakian manifold with constant α is parallel then (g, V, λ) is a Ricci soliton.

2. Preliminaries:

Let C^{∞} manifold M of dimension $2 n+1$ is called a contact manifold if it carries a global 1-form A such taht $A \bigwedge(d A)^{n} \neq 0$. Let a contact manifold be endowed with $(1,1)$ tensor field ϕ, a contravariant vector field T, a covarinant vector field A and a Lorentzian metric g on M, which makes T, a time like unit vector field such that the following conditions are satisfied [9]

$$
\begin{align*}
& A(T)=-1 \tag{2.1}\\
& \phi(T)=0 \tag{2.2}\\
& A(\phi X)=0 \tag{2.3}\\
& \phi^{2} X=X+A(X) T \tag{2.4}\\
& A(X)=g(X, T) \tag{2.5}\\
& g(\phi X, \phi Y)=g(X, Y)+A(X) A(Y) \tag{2.6}\\
& \phi(X, Y)=g(X, \phi Y)=g(Y, \phi X)=\phi(Y, X) \tag{2.7}\\
& \phi(X, T)=0 \tag{2.8}
\end{align*}
$$

Definition 2.1. If on a Lorentzian alpha α-Sasakian manifold, the following relations

$$
\begin{align*}
& \phi X=-\frac{1}{\alpha}\left(\nabla_{X} T\right) \tag{2.9}\\
& \nabla_{X} A(Y)=-\alpha g(\phi X, Y)=-\alpha \phi(X, Y) \tag{2.10}\\
& \alpha(X)=\nabla_{X} \alpha=g(X, \bar{\alpha}) \tag{2.11}\\
& \left(\nabla_{X} \phi\right)(Y, Z)=\alpha[\{g(X, Y)+A(X) A(Y)+g(X, Z)+A(X) A(Z)\} A(Y)] \tag{2.12}
\end{align*}
$$

hold, where ∇ denotes the Riemannian connection of the metric tensor g then M satisfying conditions (2.1) - (2.12) is called a Lorentzian α-Sasakian manifold with a coefficient α.

3. Proofs of Theorems 1.1 and 1.2:

In proving theorems 1.1 and 1.2 , we need the following theorems.
Theorem 3.1. On a Lorentzian α-Sasakian manifold with coefficient α, the following holds

$$
\begin{gather*}
A(R(X, Y) Z)=\alpha^{2}[g(Y, Z) A(X)-g(X, Z) A(Y)] \tag{3.1}\\
-[\alpha(X) \phi(Y, Z)-\alpha(Y) \phi(X, Z)]
\end{gather*}
$$

Proof. On differentiating (2.10) covariantly and using (2.11) and (2.12) the proof follows immediately.
Theorem 3.2. For a Lorentzian α-Sasakian manifold with coefficient α, we have

$$
\begin{equation*}
R(T, X) Y=\alpha^{2}[g(X, Y) T-A(Y) X]+\alpha(Y) \phi X-\bar{\alpha} \phi(X, Y) \tag{3.2}
\end{equation*}
$$

where $g(X, \bar{\alpha})=\alpha(X)$.
Proof. The proof follows in an obvious manner after making use of (2.11) and (3.1).

Theorem 3.3. For a Lorentzian α-Sasakian manifold with coefficient α, the following holds

$$
\begin{equation*}
R(T, X) T=\beta \phi X+\alpha^{2}[X+A(X) T] \tag{3.3}
\end{equation*}
$$

where $\alpha(T)=\beta$.
Proof. In view of equation (3.2), the proof follows immediately.

4. Ricci Solitons and Second Order Parallel Symmetric Tensors

Proof of Theorem 1.1: Let h denote a $(0,2)$ tensor field on a Lorentzian α-Sasakian manifold M with coefficient α such that

$$
\begin{equation*}
h(R(W, X) Y, Z)+h(Y, R(W, X) Z)=0 \tag{4.1}
\end{equation*}
$$

for arbitrary vector fields X, Y, Z, W on M. Substituting $W=Y=Z=T$ in (4.1), we get

$$
\begin{equation*}
g(R(T, X) T, T)+g(T, R(T, X) T)=0 \tag{4.2}
\end{equation*}
$$

In view of Theorem 3.3, the above equation becomes

$$
\begin{equation*}
2 \beta h(\phi X, T)+2 \alpha^{2} h(X, T)+2 \alpha^{2} g(X, T) h(T, T)=0 \tag{4.3}
\end{equation*}
$$

On simplifying (4.3), we get

$$
\begin{equation*}
g(X, T) h(T, T)+h(X, T)+\frac{\beta}{\alpha^{2}} h(\phi X, T)=0 \tag{4.4}
\end{equation*}
$$

Replacing X by ϕX in (4.4), we get

$$
\begin{equation*}
h(\phi Y, T)=-\frac{\alpha^{2}}{\beta}[A(Y) h(T, T)+h(Y, T)] \tag{4.5}
\end{equation*}
$$

Using (4.4) and (4.5), we get

$$
\begin{equation*}
h(T, T) A(Y)+h(Y, T)=0 \text { if } \alpha^{4}-\beta^{2} \neq 0 \tag{4.6}
\end{equation*}
$$

Differentiating (4.6) covariantly with respect to Y, we get

$$
\begin{equation*}
h(T, T) g(X, \phi Y)+2 g(X, T) h(\phi X, T)+h(X, \phi Y)=0 . \tag{4.7}
\end{equation*}
$$

In view of (2.9), the equation (4.7) assumes the following form

$$
\begin{equation*}
h(T, T) g(X, \phi Y)=-h(X, Y) \tag{4.8}
\end{equation*}
$$

In view of the fact that $h(T, T)$ is constant along any vector on M, we have proved the theorem unless $\alpha^{4}-\beta^{2} \neq 0$.
Suppose that the $(0,2)$ type symmetric tensor field $£_{V} g+2 S$ is parallel for any vector field V on a Lorentzian α-Sasakian manifold with coefficient α. Then by theorem 1.1 it follows that $£_{V} g+2 S$ is a constant multiple of the metric tensor g since $£_{V} g+2 S=-2 \lambda g$ for all X, Y on M, where λ is a constant. Hence (1.1) holds. This shows that (g, V, λ) yields a Ricci Soliton. Hence we have the following theorem.

Theorem 4.1. If the tensor field $£_{V} g+2 S$ on a Lorentzian α-Sasakian manifold with a coefficient α, is parallel for any vector field V, then (g, V, λ) is a Ricci Soliton.

Proof. Let (g, V, λ) be a Ricci Soliton on Lorentzian α-Sasakian manifold with a coefficient α. Then we have

$$
\begin{equation*}
\left(£_{T} g\right)(Y, Z)+2 S(Y, Z)+2 \lambda g(Y, Z)=0 \tag{4.9}
\end{equation*}
$$

where $£_{T}$ is the Lie Derivative along the vector field T on M. From (2.9), it follows that

$$
\begin{align*}
\left(f_{T} g\right)(Y, Z) & =g\left(\nabla_{Y} T, Z\right)+g\left(Y, \nabla_{Z} T\right) \tag{4.10}\\
& =-\alpha[g(\phi Y, Z)+g(Y, \phi Z)] \\
& =-2 \alpha \phi(Y, Z)
\end{align*}
$$

Using (4.10) in (4.9) we get

$$
\begin{equation*}
S(Y, Z)=\alpha \phi(Y, Z)-\lambda g(Y, Z) \tag{4.11}
\end{equation*}
$$

where α and λ are non zero scalars. This shows that the manifold under consideration is nearly quasi-Einstein manifold [8]. Thus, we have the follwing theorem:

Theorem 4.2. If (g, T, λ) is Ricci Soliton on a Lorentzian α-Sasakian manifold M with a coefficient α, then M is nearly quasi-Einstein manifold.

Proof of Theorem 1.2: Let h be a parallel 2-form on a Lorentzian α - Sasakian manifold M with a coefficient α. Then putting $W=Y=T$ in (4.1) and using theorem 3.3 and equations (2.1)-(2.12), we get

$$
\begin{gather*}
\beta h(Z, \phi X)+\alpha^{2} h(X, Z)-\alpha^{2} h(T, Z) A(X)+\alpha^{2} h(T, X) A(Z) \tag{4.12}\\
+h(T, \phi X) \alpha(Z)+h(\bar{\alpha}, T) \phi(X, Z)=0
\end{gather*}
$$

Let ϕ^{*} to be a $(2,0)$ tensor field metrically equivalent to ϕ then contracting (4.12) with ϕ^{*} and using antisymmetric property of h and the symmetry property of ϕ^{*}, we obtain, in view of equations (2.3)-(2.6) and after simplifying, we get

$$
\begin{equation*}
h(\bar{\alpha}, T)=0 \tag{4.13}
\end{equation*}
$$

Substituting (4.13) in (4.12) we get

$$
\begin{gather*}
\beta h(\phi X, Z)+\alpha^{2}[h(X, Z)-h(T, Z) A(X)+h(T, X) A(Z)] \tag{4.14}\\
+h(T, \phi X) \alpha(Z)=0 .
\end{gather*}
$$

On simplifying (4.14) we get

$$
\begin{equation*}
\beta h(\phi Z, X)-\alpha^{2}[h(Z, X)+h(T, X) A(Z)-h(T, Z) A(X)]+h(T, \phi Z) \alpha(X)=0 . \tag{4.15}
\end{equation*}
$$

On simplifying (4.14) and (4.15) we get

$$
\begin{equation*}
\beta[h(Z, \phi X)+h(X, \phi Z)]+\alpha(X) h(\phi Z, T)+\alpha(Z) h(\phi X, T)=0 . \tag{4.16}
\end{equation*}
$$

On replacing X by ϕY in (4.16), we get

$$
\begin{equation*}
\beta\left[h\left(Z, \phi^{2} Y\right)+h(\phi Y, \phi Z)\right]+\alpha(\phi Y) h(\phi Z, T)+\alpha(Z) h\left(\phi^{2} Y, T\right)=0 . \tag{4.17}
\end{equation*}
$$

On making use of (2.4) in (4.17), we get

$$
\begin{equation*}
\beta[h(Z, Y)+h(Z, T) A(Y)+h(\phi Y, \phi Z)]+\alpha(Z) h(Y, T)+\alpha(\phi Y) h(\phi Z, T)=0 . \tag{4.18}
\end{equation*}
$$

On simplifying (4.18), we get

$$
\begin{gather*}
\beta[h(Y, Z)+h(Y, T) A(Z)+h(\phi Z, \phi Y)]+\alpha(Y) h(Z, T) \tag{4.19}\\
+\alpha(\phi Z) h(\phi Y, T)=0 .
\end{gather*}
$$

In view of (4.18) and (4.19) on simplifying we obtain
(4.20) $\beta[h(T, Z) A(Y)+h(T, Y) A(Y)]-\alpha(Z) h(T, Y)-h(T, \phi Z) \alpha(\phi Y)-\alpha(Y) h(Z, T)-\alpha(\phi Z) h(T, \phi Y)=0$.

Putting $Y=\bar{\alpha}$ in (4.20) and using (4.13), we get

$$
\begin{equation*}
\beta[h(T, Z) A(\bar{\alpha})-h(T, \phi Z) \alpha(\phi \bar{\alpha})-\alpha(\bar{\alpha}) h(Z, T)=0 \tag{4.21}
\end{equation*}
$$

Let us put $\alpha \bar{\alpha}=\hat{\alpha}$ and $\alpha(\phi \bar{\alpha})=\hat{\beta}$ in (4.21), we get

$$
\begin{equation*}
h(Z, T)[\beta A(\bar{\alpha})-\alpha(\bar{\alpha})]=h(T, \phi Z) \hat{\beta} \tag{4.22}
\end{equation*}
$$

Replacing Z by ϕZ in (4.22), we get

$$
\begin{equation*}
h(\phi Z, T)\left[\beta^{2}-\bar{\alpha}\right]=\hat{\beta} h(T, Z) \tag{4.23}
\end{equation*}
$$

On simplifying (4.23) and replacing Z by ϕZ, we obtain

$$
\begin{equation*}
h\left(\phi^{2} Z, T\right)=\frac{\hat{\beta}}{\bar{\alpha}-\beta^{2}} h(\phi Z, T) \tag{4.24}
\end{equation*}
$$

On making use of (2.4) in (4.24), we get

$$
\begin{equation*}
\frac{\bar{\alpha}-\beta^{2}}{\hat{\beta}} h(Z, T)=\frac{\hat{\beta}}{\bar{\alpha}-\beta^{2}} h(Z, T) \tag{4.25}
\end{equation*}
$$

From (4.25), it follows immediately that

$$
\begin{equation*}
h(Z, T)=0 \text { unless }\left(\bar{\alpha}-\beta^{2}\right)^{2}-(\hat{\beta})^{2} \neq 0 \tag{4.26}
\end{equation*}
$$

Using (4.26) in (4.14), we get

$$
\begin{equation*}
\beta h(Z, \phi X)+\alpha^{2} h(Z, X)=0 . \tag{4.27}
\end{equation*}
$$

Differentiating (4.26) covariantly along Y and using the fact that $\nabla h=0$, we get

$$
\begin{equation*}
h(Z, \phi Y)=0 \tag{4.28}
\end{equation*}
$$

In view of (4.28) and (4.27), we see that $h(Y, Z)=0$, which completes the proof.

Acknowledgement. The author wishes to express his thankfulness to Professor Ramesh Sharma for his valuable discussions during the preparation of this paper.

References

[1] D. E. Blair, Contact Manifolds in Riemanian Geometry, Lecture Notes in Mathematics 509, Springer-Verlag, Berlin-Heidelberg, New York 1976.
[2] D. E. Blair, Riemannian Geometry of contact and Symplectic Manifolds, Progress in Mathematics 203, Birkhauser, Boston 2002.
[3] D. E. Blair and S. I. Goldberg, Topology of almost contact manifolds, J. Differential Geometry 1(3-4) (1967), 347-354.
[4] L. Das and J. Sengupta, On conformally flat LP-Sasakian manifolds with a coefficient α, Bull. Cal. Math. Soc. 98(4) (2006), 377-382.
[5] L. Das, Second order parallel tensors on LP-Sasakian manifolds with a coefficient α, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis 33(1) (2017), 85-89.
[6] L. Das, Second Order Parallel Tensor on α - Sasakian manifold, Acta Mathematica, Academiae Pedagogicae Nyiregyhaziensis 23(1) (2007), 65-69.
[7] L. Das, On CR-structures and F-structure satisfying $F^{K}+(-1)^{K+1} F=0$, Rocky Mountain J. Math. 36 (2006), 885-892.
[8] U. C. De and A. K. Gaji, On nearly quasi-Einstein manifolds, Novi Sad J. Math. 38 (2008), 115-121.
[9] L. P. Eisenhart, Symmetric tensors of the second order whose first covariant derivatives are zero, Trans. Amer. Math. Soc. 25 (1923), 297-306.
[10] R. S. Hamilton, The Ricci flow on surface, Mathematics and General Relativity 71 (1988), 237-262.
[11] H. Levy, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Maths. 27 (1926), 91-98.
[12] K. Matsumoto, On Lorentzian almost paracontact manifolds, Bull. of Yamagata Univ. Nat. Sci. 12 (1989), 151-156.
[13] I. Sato and K. Matsumoto, On P-Sasakian manifolds satisfying certain conditions, Tensor, N. S. 33 (1979), 173-178.
[14] R. Sharma, Second order parallel tensors on contact manifolds, Algebras, Groups and Geometries 7 (1990), 145-152.
[15] T. Toshio, Sasakian manifold with pseudo-Riemannian metric, Tohoku Math. Journal 21 (1969), 271-290.
[16] A. Yildiz and C. Murathan, On Lorentzian α-Sasakian manifolds, Kyungpook Math. J. 45 (2005), 95-103.
Department of Mathematics, Kent State University, New Philiadephia, Ohio, 44663, USA
Email address: ldas@kent.edu

