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Abstract. A Bertrand curve is a space curve having its principal normals as principal
normals for another space curve. Interesting well-known geometric properties are recalled
and a less known property is proven. One gives a way to construct a Bertrand curve and
an example.

As a natural generalization, Bertrand surfaces are defined and a geometric property
is given. Applications of Bertrand curves and surfaces in engineering are mentioned.
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1. Introduction

In this section we will shortly recall the definition of a parametrized space curve, the Frenet frame
associated to a space curve and Frenet formulae. We will give the definition of Bertrand curves and some
of its well-known geometrical properties.

Let I ⊂ R be a real interval, E3 the 3-dimensional Euclidean space and

c : I → E3, c(s) = (x(s), y(s), z(s)),

be a canonical parametrized space curve, i.e.,

∥ċ(s)∥ = 1, ∀ s ∈ I,

where the dot denotes the first derivative.

The parameter s for which ∥ċ(s)∥ = 1 is called the canonical parameter. From the theory of curves
one knows that any regular space curve admits a canonical parameter.

Denote by {t, n, b} the Frenet frame associated to the curve c (see Figure 1).
We recall the following notations: t is the unit tangent vector, n is the unit principal normal vector, b

is the unit binormal vector. Also, (n, b) is the normal plane, orthogonal to the tangent vector, (t, b) is the
rectifying plane, orthogonal to the principal normal vector and (t, n) is the osculating plane, orthogonal
to the binormal vector.

The existence of a Frenet frame at a point of a space curve is assured by the condition that the vectors
ċ(s) a̧nd c̈(s) to be linearly independent, where double dots mean the second derivative.

The curvature of a curve (with respect to the canonical parameter) is denoted by K(s) and its torsion
is denoted by τ(s) and they are given by

K(s) = ∥c̈(s)∥,

τ(s) =
det(ċ(s), c̈(s),

...
c (s))

∥c̈(s)∥2
.
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Figure 1. Frenet frame ([2])

The Frenet formulae with respect to the canonical parameter are:

ṫ(s) = K(s)n(s),

ṅ(s) = − K(s)t(s) + τ(s)b(s),

ḃ(s) = −τ(s)n(s),

or, in an equivalent way, by using matrices: ṫ(s)
ṅ(s)

ḃ(s)

 =

 0 K(s) 0
−K(s) 0 τ(s)

0 −τ(s) 0

  t(s)
n(s)
b(s)

 .

Remark 1.1. The unit normal principal vector n(s) is always collinear with c̈(s), for s canonical

parameter, because, by definition, n(s) = c̈(s)
||c̈(s)|| .

This property holds also for an arbitrary parameter t for which ||ċ(t)|| is constant.
A Bertrand curve is a curve c : I → E3 for which its principal normals are principal normals for

another curve c.
The nontrivial case is that of space curves and we will consider Bertrand (space) curves in this note.
The curves c and c are called Bertrand associated curves and the points in which the principal normals

coincide are associated points or corresponding points (see Figure 2).
These curves have interesting geometric properties; some of them are recalled below:

Proposition 1.2. ([2], [3])

1) The distance between two corresponding points on two associated Bertrand curves, measured on
the common principal normal, is constant.

2) The angle between the tangents at two Bertrand curves in two corresponding points is constant.
3) If K(s) and τ(s) are the curvature, respectively the torsion of a Bertrand curve c : I → E3 at

an arbitrary point c(s), then there exist 3 real constants a1, a2, a3 ∈ R, a3 ̸= 0, such that

a1K(s) + a2τ(s) + a3 = 0, ∀ s ∈ I.

Remark 1.3. A similar relation holds for the associated curve c: ∃ a1, a2, a3 ∈ R, a3 ̸= 0, such that

a1K(s) + a2τ(s) + a3 = 0, ∀ s ∈ Ī .
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Figure 2. Two associated Bertrand curves ([2])

Proposition 1.4. [2] If for a space curve c : I → E3 (of zero torsion) there exist at least two curves
c∗si c∗∗ which are Bertrand associated, then the curve c is a circular helix. The converse statement also
holds.

2. Torsions of two Bertrand associated curves

This section contains the proof of a less-known property of associated Bertrand curves.
More precisely, in [2] the following problem is proposed:

Prove that the product of the torsions of two Bertrand associated curves is constant.

We propose the following:

Proof.
From item 1) of Proposition 1.2. we have

c (s) = c(s) + an(s),

because the distance between two corresponding points on two associated Bertrand curves is constant, a.
From the previous relation and from the Frenet formulae it follows that:

dc (s)

ds
=

dc(s)

ds
+ a

dn(s)

ds
= t(s) + aṅ(s) =

t(s) + a (−K(s)t(s) + τ(s)b(s)) = (1− aK(s)) t(s) + aτ(s)b(s).

We have

t (s) =
dc (s)

ds

ds

ds
= [(1− aK(s)) t(s) + aτ(s)b(s)]

ds

ds
.

On the other hand, we can write

t (s) = (cos θ)t(s) + (sin θ)b(s),

where θ is the constant angle of the tangents (see 2) from Proposition 1.2); then

cos θ =(1− aK(s))
ds

ds
,

sin θ = aτ(s)
ds

ds
.
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We shall have

cot θ =
cos θ

sin θ
=

1− aK(s)

aτ(s)
.

On the other hand,
b (s) = t (s)× n (s) =

= (cos θt(s) + sin θb(s))× (±n(s)) =

= ± cos θt(s)× n(s)± sin θb(s)× n(s) =

= ± [cos θb(s)− sin θt(s)] .

Then
db (s)

ds
= ±

[
cos θḃ(s)− sin θṫ(s)

] ds

ds
=

= ± [− cos θτ(s)n(s)− sin θK(s)n(s)]
ds

ds

= [− cos θτ(s)n (s)− sin θK(s)n (s)]
ds

ds
.

It follows that

τ (s)n (s) = (cos θτ(s) + sin θK(s))n (s)
ds

ds
,

and then

τ (s) = [cos θτ(s) + sin θK(s)]
ds

ds
= sin θ[cot θτ(s) +K(s)]

ds

ds

= sin θ

[
1− aK(s)

aτ(s)
τ(s) +K(s)

]
ds

ds
=

sin θ

a

ds

ds
.

Similarly,

τ(s) =
sin θ

a

ds

ds
.

Then the product of torsions of two Bertrand curves is constant, more precisely

τ(s)τ (s) =
sin2 θ

a2
.

3. Construction of a Bertrand curve. Example

Let c : I → E3 be defined by:

c(t) = α

∫
g(t)dt+ β

∫
g(t)× ġ(t)dt,

where g : I → E3 is a vector-valued smooth function, with ∥g(t)∥ = ∥ġ(t)∥ = 1, and α, β are real
constants.

We shall prove that c is a Bertrand curve.

More precisely, this problem (proposed in [2]) represents a way to construct Bertrand curves.

Starting from the definition of c, by calculating the first derivative we find ċ(t) = αg(t) + βg(t)× ġ(t),

where α, β ∈ R; it follows that ∥ċ(t)∥ =
√

α2 + β2 is constant.
From the second derivative we obtain

c̈(t) = αġ(t) + β[g(t)× ġ(t)]′ =

= αġ(t) + βġ(t)× ġ(t) + βg(t)× g̈(t) = αġ(t) + βg(t)× g̈(t).

It follows that the principal normal vector n(t), being collinear with c̈(t) (according to Remark 1.1)
will be written as a linear combination of the vectors ġ(t) and g(t)× g̈(t).
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On the other hand, {g(t), ġ(t), g(t)× ġ(t)} is an orthonormal frame of unit vectors (this follows imme-
diately from the definition of the vector function g).

We have < g(t)× g̈(t), g(t) > = (g(t), g̈(t), g(t)) = 0 (mixed product) and

< g(t)× g̈(t), g(t)× ġ(t) > =
1

2
< g(t)× ġ(t), g(t)× ġ(t) >

′
= 0.

It follows that g(t)× g̈(t) is collinear with ġ(t), and then we can write g(t)× g̈(t) = γġ(t).
Then c̈(t) = αġ(t) + βγġ(t) = (α+ βγ)ġ(t), and so

n(t) = ±ġ(t).

By defining the curve c∗(t) =
∫
g(t)dt, where t is the canonical parameter for

∫
g(t)dt (because

∥g(t)∥ =
∥∥(∫ g(t)dt)′

∥∥ = 1), then t it is also canonical parameter for c∗, it follows that the principal

normal vector n∗(t) of the curve c∗(t), is collinear with c̈∗(t), and then it is collinear with ġ(t).

Then, we proved that c and c∗ are associated Bertrand curves, with the same principal normals of
direction ġ(t).

We construct the following

Example. Let g(t) =
(

1√
2
sin t, 1√

2
sin t, cos t

)
, from where ∥g(t)∥ = 1.

We have

ġ(t) =

(
1√
2
cos t,

1√
2
cos t, − sin t

)
and ∥ġ(t)∥ = 1. Then

g(t)× ġ(t) =

∣∣∣∣∣∣
i j k

1√
2
sin t 1√

2
sin t cos t

1√
2
cos t 1√

2
cos t − sin t

∣∣∣∣∣∣ =
(
− 1√

2
,
1√
2
, 0

)
.

It follows that

c(t) = α

∫
g(t)dt+

β√
2

∫
(−1, 1, 0)dt =

=

(
− α√

2
cos t− β√

2
t, − α√

2
cos t+

β√
2
t, α sint

)
is a Bertrand curve.

The associated Bertrand curve is

c∗(t) =

∫
g(t)dt =

(
− 1√

2
cos t, − 1√

2
cos t, sin t

)
.

By calculations, one proves that the principal normals of directions n(t) and n∗(t) of the curves c(t)
and c∗(t), respectively, are:

x+ α√
2
cos t+ β√

2
t

− α3√
2
cos t

=
y + α√

2
cos t− β√

2
t

− α3√
2
cos t

=
z − α sin t

α3 sin t
,

x+ 1√
2
cos t

− 1√
2
cos t

=
y + 1√

2
cos t

− 1√
2
cos t

=
z − sin t

sin t
.

Obviously, the principal normal of the curve c coincides with the principal normal of c∗ (both have

the director vector
(
− 1√

2
cos t, − 1√

2
cos t, sin t

)
, and then c and c∗ are Bertrand associated curves.

In Figure 3 we illustrated this example for α = 3 şi β = 5 (by using https://www.math3d.org/tnb).
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Figure 3. Example for α = 3 şi β = 5

Figure 4. Associated Bertrand surfaces

4. Bertrand surfaces

A natural generalization of the notion of a Bertrand curve is that of a Bertrand surface.

We define two Bertrand associated surfaces as two surfaces which (at corresponding points) have
common normals (see Figure 4).

Let Σ be the surface defined by

Σ : r(u, v) = (x(u, v), y(u, v), z(u, v)) .
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Figure 5. https://www.gwstoolgroup.com/the-ins-and-outs-of-ball-nose-
end-mills/

We denote by N(u, v) the normal to the surface Σ at the (regular) point (x(u, v), y(u.v), z(u, v)) (i.e.
ru = ∂r

∂u and rv = ∂r
∂v are linearly independent vectors at that point).

We define the surface Σ∗ by r∗ (u∗, v∗) = r(u, v)+a(u, v)N(u, v), where a(u, v) represents the distance
between the corresponding points, measured on the common normal.

We have
∂r∗

∂u
(u∗, v∗) =

∂r

∂u
(u, v) +

∂a

∂u
(u, v)N(u, v) + a(u, v)

∂N

∂u
(u, v).

The left hand side of the equality is tangent to Σ∗, and then is tangent to Σ.
The first term of the right hand side is tangent to Σ.
The last term of the right hand side is tangent to Σ.
It follows that ∂a

∂u (u, v) = 0, because the right hand side of the equality cannot have a normal component
to Σ.

In a similar way, one can proves that ∂a
∂v (u, v) = 0.

Then it follows that a(u, v) = a (constant).

We proved the following

Proposision 4.1. The distance between the corresponding points, measured on the common normal
of a two Bertrand surfaces is constant.

Remark 4.2. The Proposition 4.1. corresponds to the item 1 of Proposition 1.2. for Bertrand curves.

Proposition 4.3. The angle between the tangent planes to the Bertrand surfaces Σ and Σ∗ at corre-
sponding points is zero.

The proof is obvious, because the two tangent planes are normal to the same line.

Remark 4.4. The Proposition 4.3. corresponds to the item 2 of Proposition 1.2. for Bertrand curves.

5. Applications

The Bertrand curves are well-known in geometry. Still, their applications were not intensively studied.
In [4] applications of Bertrand curves in CADCAM (Computer-Aided Design Computer-Aided Man-

ufacturing) are described, more precisely in programming of cutter motions, i.e., cutting movements of
different objects.

In the same paper [4] we also found the notion of Bertrand surfaces, but they were constructed
conversely, i.e., starting from a practical application, called the ball-end cutter with nose radius (see
Figure 5), but the mathematical definition which arises from this practical application coincides with our
definition from the previous section and there geometrical properties were not investigated.

For applications of Bertrand surfaces in engineering we can also refer to [1].
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