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Abstract. In this paper our aim is to approximate a function with the use of fuzzy
positive linear operators when the fuzzy limit fails by defining the fuzzy analog of Pp-
statistical convergence. It is effective to use this type of convergence since a sequence can
still be Pp-statistical convergent while it is neither convergent nor statistically convergent.
By considering fuzzy positive linear operators, we obtain Korovkin type approximation
results for these operators in the sense of Pp-statistical convergence. The rate of approx-
imation by fuzzy modulus of continuity is also presented.
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1. Introduction and Preliminaries

The class of smart boys, the class of clever students or the class of all apples which are red enough
do not construct sets in the usual mathematical sense of these terms. However, the fact lies under such
uncertainly defined sets play significant role in human thinking, pattern recognition, machine learning.
This motivates Zadeh [30] to define fuzzy sets by assigning to each element a grade of membership
ranging from 0 to 1. It is effective to use membership function to overcome the uncertainty. Later,
many researchers have extended the well known concepts of classical set theory to fuzzy setting. There
are also many studies on fuzzy topology since it is applicable to quantum particle physics [21], [22].
Recently the generalizations of fuzzy topology such as intuitionistic fuzzy topology, Pythagorean fuzzy
topology have been studied in [10], [24], [29]. Furthermore fuzzy logic has also been used in different
areas of mathematics, for example, while studying metric and topological spaces [28], matrix and linear
systems [8], [25], approximation theory. Gal has presented some results dealing with approximation
theory in fuzzy setting [18]. Korovkin type approximation results in fuzzy setting by using different
types of convergences instead of ordinary convergence have been presented in [1], [2], [3], [9]. Statistical
approximation of fuzzy trigonometric functions and fuzzy differentiable functions have been studied in
[4], [5], [12], [13]. The corresponding statistical rates in the fuzzy approximation have been obtained in
[14]. In ordinary convergence, all of the terms of the sequence except finite number have to belong to an
arbitrarily small neighborhood of the limit. This is a critical weakness of ordinary convergence and by
flexing this condition only for a majority of elements, statistical convergence has been defined. The aim
of obtaining stronger results than the classical ones, different types of convergences have been defined
and used in approximation theory.
In this study, by considering fuzzy positive linear operators we present some Korovkin type approximation
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results with the use of Pp-statistical convergence. We also obtain the rate of this approximation by fuzzy
modulus of continuity. Furthermore we construct examples to show the strength of our results.

Now let us recall the basic definitions and notations.
If the limit

δ(K) := lim
k→∞

1

k + 1
|{n ≤ k : n ∈ K}|

exists then it is said to be the density of the subset K ⊆ N0. Here by |.|, we denote the number of the
elements of enclosed set and N0 is the set of all nonnegative integers. If for every ε > 0, δ(Kε) = 0 where
Kε = {n ∈ N0 : |xn − l| ≥ ε}, then it is said that x = (xn) converges statistically to l [16], [17], [26].

Let (pn) be a real sequence such that p0 > 0, p1, p2, ...≥ 0, and p(t) :=
∞∑

n=0

pnt
n has radius of

convergence R with 0 < R ≤ ∞. If the limit

lim
t→R−

1

p (t)

∞∑
n=0

xnpnt
n = l

exists then it is said that x = (xn) is convergent to l in the sense of power series method [7], [20]. The
next example shows that ordinary convergence is not as effective as power series method, i.e., power series

method is more useful. Let x = (1,−1, 1,−1, ...), R = ∞, p (t) = et and for n ≥ 0, pn =
1

n!
. Then we

immediately see that

lim
t→∞

1

et

∞∑
n=0

xnt
n

n!
= lim

t→∞

1

et

∞∑
n=0

(−1)ntn

(n)!
= lim

t→∞

1

et
e−t = 0.

Hence while the sequence x = (xn) converges to 0 in the sense of power series method, it does not converge
in the ordinary sense.
If limx = l implies Pp − limx = l, then it is said that Pp is regular [7]. The regularity of power series
method is equivalent to

lim
t→R−

pnt
n

p (t)
= 0

holds for each n ∈ N0 [7].
Let Pp be regular and K ⊂ N0. If the limit

δPp
(K) := lim

t→R−

1

p (t)

∑
n∈K

pnt
n

exists then it is said to be the Pp-density of K.
The sequence x = (xn) of real numbers Pp-statistically converges to l if for every ε > 0, δPp

(Kε) = 0
that is for every ε > 0

lim
t→R−

1

p (t)

∑
n∈Kε

pnt
n = 0.

An example of a sequence such that statistical convergent but not Pp-statistical convergent and an
example of a sequence such that Pp-statistical convergent but not statistically convergent have been
presented in [27].
If the followings are satisfied for a function ν : R −→ [0, 1]

• ν is normal, i.e., there exists x0 ∈ R such that ν(x0) = 1,

• ν is convex, i.e., ν(λx+ (1− λ)y) ≥ min{ν(x), ν(y)}, for all x, y ∈ R, γ ∈ [0, 1]
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• upper semi-continuous on R and

• the closure of the set supp(ν) is compact, where

supp(ν) := {x ∈ R : ν(x) > 0}
then ν is said to be a fuzzy number and RF denotes the set of such elements.
Let

[ν]0 := {x ∈ R : ν(x) > 0} and [ν]r := {x ∈ R : ν(x) ≥ r}, (0 < r ≤ 1).

Recall from [19] that, for each r ∈ [0, 1], the set [ν]r is an interval which is closed and bounded in R. For
any q, s ∈ RF and γ ∈ R, the operations sum q ⊕ s and product γ ⊙ q can be defined uniquely as follows:

[q ⊕ s]r = [q]r + [s]r and [γ ⊙ q]r = γ[q]r, 0 ≤ r ≤ 1.

The interval [q]r can be denoted by [q
(r)
− , q

(r)
+ ] where q

(r)
− ≤ q

(r)
+ and q

(r)
− , q

(r)
+ ∈ R for r ∈ [0, 1]. Then

define the following for q, s ∈ RF

q ⪯ s ↔ q
(r)
− ≤ s

(r)
− and q

(r)
+ ≤ s

(r)
+ , for all 0 ≤ r ≤ 1.

On the other hand consider the following metric

d : RF × RF −→ R+

by

d(q, s) = sup
r∈[0,1]

max{|q(r)− − s
(r)
− |, |q(r)+ − s

(r)
+ |}.

Note that (RF, d) is complete. Then for the fuzzy number valued functions f, g defined on [a, b], the
distance is introuced by

d∗(f, g) = sup
x∈[a,b]

sup
r∈[0,1]

max{|f (r)
− − g

(r)
− |, |f (r)

+ − g
(r)
+ |}.

By using this metric, the statistical convergence has been introduced in fuzzy setting in [23] as follows:
Let (νn)n∈N0

be a sequence of fuzzy numbers. If for every ε > 0,

lim
k

|n ≤ k : d(νn, ν) ≥ ε|
k + 1

= 0

holds then it is said that (νn)n∈N0
converges statistically to ν and we denote it by

st− lim
n

d(νn, ν) = 0.

Then in [3], A-statistical convergence has also been defined in fuzzy setting as follows: we say that (νn)n∈N
converges A-statistically to ν ∈ RF and we denote it by

stA − lim
n

d(νn, ν) = 0,

if for every ε > 0

lim
j

∑
n:d(νn,ν)≥ε

ajn = 0

holds. If A = C1, the Cesáro matrix of order one, then we get statistical convergence recalled above.
Again in the case A is the identity matrix, then we get fuzzy convergence.
The main tool of the paper is Pp-statistical convergence and now we are ready to define it in fuzzy setting.
If

lim
t→R−

1

p (t)

∑
n∈Kε

pnt
n = 0

holds for every ε > 0 then it is denoted by stPp − lim d(νn, ν) = 0 where Kε = {n : d(νn, ν) ≥ ε}.
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2. Fuzzy Korovkin Theory in Pp-Statistical Sense

This section is devoted to our main results dealing with Korovkin type approximation and the Pp-
statistical rate of approximation. We also provide examples to illustrate that it is still possible to approx-
imate a function by fuzzy positive linear operators when the fuzzy limit fails. Therefore it is benefical to
recall some of the well known concepts in fuzzy setting.
Let f be a function defined on [a, b] with fuzzy number values. Then the fuzzy continuity of f at x0 ∈ [a, b]
is defined as follows: if xn → x0, then d(f(xn), f(x0)) → 0 as n → ∞. If f is continuous at every point
x ∈ [a, b], then it is said that f is fuzzy continuous on [a, b]. CF[a, b] is the set of all fuzzy continuous
functions on [a, b]. It is important to recall that CF[a, b] is not a vector space but a cone. Now let
T : CF[a, b] −→ CF[a, b] be an operator. If for every α, β ∈ R, f, g ∈ CF[a, b] and x ∈ [a, b],

T (α⊙ f ⊕ β ⊙ g;x) = α⊙ T (f ;x)⊕ β ⊙ T (g;x)

holds then it is said that T is fuzzy linear. Also T is called fuzzy positive linear operator if it is fuzzy
linear and T (f ;x) ⪯ T (g;x) whenever f, g ∈ CF[a, b], and all x ∈ [a, b] with f(x) ⪯ g(x).
The following Korovkin type theorem in fuzzy setting has been given by Anastassiou [2].

Theorem 2.1. Let Tn be fuzzy positive linear operators for every n ∈ N from CF[a, b] into itself. Suppose

that there exists a corresponding positive linear operators T̃n from C[a, b] into itself with the property

{Tn(f ;x)}(r)± = ˜{Tn}(f (r)
± ;x)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N, f ∈ CF[a, b]. If

lim
n

|| ˜{Tn}(xi)− xi|| = 0, i = 0, 1, 2,

then for all f ∈ CF[a, b], we have
lim
n

d∗(Tn(f), f) = 0.

Anastassiou and Duman have given the A-statistical analog of this theorem in [3]. Now it is time to
give our main result.

Theorem 2.2. Let Pp be regular and Tn be fuzzy positive linear operators for every n ∈ N0 from CF[a, b]

into itself. Suppose that there exists a corresponding positive linear operators T̃n from C[a, b] into itself
with the property

{Tn(f ;x)}(r)± = ˜{Tn}(f (r)
± ;x)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N0, f ∈ CF[a, b]. If

stPp
− lim

n
∥ ˜{Tn}(xi)− xi∥ = 0, i = 0, 1, 2,

then for all f ∈ CF[a, b], we have
stPp − lim

n
d∗(Tn(f), f) = 0.

Proof. Let f ∈ CF[a, b], x ∈ [a, b] and r ∈ [0, 1]. For every ε > 0, there exists δ > 0 such that

|f (r)
± (y)− f

(r)
± (x)| < ε holds for every y ∈ [a, b] satisfying |y − x| < δ since f

(r)
± ∈ C[a, b]. As in classical

Korovkin theory, we have that

|f (r)
± (y)− f

(r)
± (x)| ≤ ε+ 2H

(r)
±

(y − x)2

δ2

holds for all y ∈ [a, b] where 2H
(r)
± := ∥2f (r)

± ∥. ˜{Tn} is positive and linear,

| ˜{Tn}(f (r)
± ;x)− f

(r)
± (x)| ≤ ˜{Tn}(|f (r)

± (y)− f
(r)
± |;x) +H

(r)
± | ˜{Tn}(1;x)− 1|

≤ ε+ (ε+H
(r)
± | ˜{Tn}(1;x)− 1|) +

2H
(r)
±

δ2
| ˜{Tn}((y − x)2;x)|

holds for each n ∈ N0 and it implies
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| ˜{Tn}(f (r)
± ;x)− (f

(r)
± ;x)| ≤ ε+ (ε+H

(r)
± + 2h2H

(r)
±
δ2

)| ˜{Tn}(1;x)− e1|

+ 4h
H

(r)
±
δ2

| ˜{Tn}(t;x)− x|+ 2
H

(r)
±
δ2

)| ˜{Tn}(t2;x)− x2|

where h := max{|a|, |b|}. Pick

H
(r)
± (ε) := max{ε+H

(r)
± + 2h2H

(r)
±
δ2

, 4h
H

(r)
±
δ2

, 2
H

(r)
±
δ2

}

and take supremum over x ∈ [a, b], then we have that

∥ ˜{Tn}(f (r)
± )− f

(r)
± ∥ ≤ ε+H

(r)
± (ε){∥ ˜{Tn}(1)− 1∥+ ∥ ˜{Tn}(x)− x∥+ ∥ ˜{Tn}(x2)− x2∥}.

Then, by the property in hypothesis, we obtain that

d∗(Tn(f), f) = sup
x∈[a,b]

d(Tn(f ;x)− f(x))

= sup
x∈[a,b]

sup
r∈[0,1]

max{| ˜{Tn}(f (r)
− ;x)− f

(r)
− (x)|, | ˜{Tn}(f (r)

+ ;x)− f
(r)
+ (x)}

= sup
r∈[0,1]

max{∥ ˜{Tn}(f (r)
− )− (f

(r)
− )∥, ∥ ˜{Tn}(f (r)

+ )− (f
(r)
+ )∥}.

Considering the above inequalities, we obtain that

d∗(Tn(f), f) ≤ ε+H(ε){∥ ˜{Tn}(1)− 1∥+ ∥ ˜{Tn}(x)− x∥+ ∥ ˜{Tn}(x2)− x2∥}

where H(ε) := supr∈[0,1] max{H(r)
− (ε), H

(r)
+ (ε)}. Now for a given ε

′
, choose ε > 0 such that 0 < ε < ε

′

and also define

K := {n ∈ N0 : d∗(Tn(f), f) ≥ ε
′
},

K0 := {n ∈ N0 : ∥ ˜{Tn}(1)− 1∥ ≥ ε
′ − ε

3H(ε)
},

K1 := {n ∈ N0 : ∥ ˜{Tn}(x)− x∥ ≥ ε
′ − ε

3H(ε)
},

K2 := {n ∈ N0 : ∥ ˜{Tn}(x2)− x2∥ ≥ ε
′ − ε

3H(ε)
}.

Using the above inequalities, we have K ⊆ K0 ∪K1 ∪K2 which implies that

1

p(t)

∑
n∈K

pnt
n ≤ 1

p(t)
{
∑
n∈K0

pnt
n +

∑
n∈K1

pnt
n +

∑
n∈K2

pnt
n}.

By taking limit as 0 < t → R− on the both sides and using the hypothesis, we immediately obtain that

lim
0<t→R−

1

p(t)

∑
n∈K

pnt
n = 0.

Hence the proof is completed. □

Example 2.3. Let the sequences (pn) and (an) defined as follows:

pn =

{
1 , n = 2k
0 , n = 2k + 1

, an =

{
0 , n = 2k + 1
1 , n = 2k

.

One can immediately obtain that the method Pp is regular and

δPp(Kε) = 0
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where Kε = {n ∈ N0 : |an − 1| ≥ ε} holds for every ε > 0. That is
stPp−lim an = 1. Notice that (an) is neither convergent in the ordinary sense nor statistically convergent.
Now construct the fuzzy Bernstein-type operators as follows

T F
n (f ;x) =

{
an ⊙⊕n

k=0

(
n
k

)
xk(1− x)n−k ⊙ f( kn ) , n ∈ N
f(x) , n = 0

where f ∈ CF[0, 1], x ∈ [0, 1].
In this case, one can also write

{T F
n (f ;x)}r± = ˜{Tn}(f (r)

± ;x) = an

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(r)
± (

k

n
)

where f
(r)
± ∈ C[0, 1]. Notice that

˜{Tn}(1;x) = an,

˜{Tn}(t;x) = xan,

˜{Tn}(t2;x) = [x2 +
x(1− x)

n
]an.

Then
stPp

− lim
n

∥ ˜{Tn}(xi)− xi∥ = 0

holds for i = 0, 1, 2 then
stPp

− lim
n

d∗(T F
n (f), f) = 0

holds for all f ∈ CF[a, b] follows from our main result. Notice that since the sequence (an) is not conver-
gent, {T F

n (f)}n∈N0
is not fuzzy convergent to f .

Example 2.4. Let (pn) and (an) be defined as follows:

pn =

{
1 , n = 2k
0 , n = 2k + 1

, an =

{
0 , n = 2k
1 , n = 2k + 1

.

It is easy to see that Pp is regular and

Kε = {n ∈ N0 : |an − 0| ≥ ε} ⊆ {n = 2k + 1 : k ∈ N0}
holds for every ε > 0. Then we have

δPp
(Kε) = lim

0<t→R−

1

p(t)

∑
n∈Kε

pnt
n = 0

i.e., that (an) is Pp-statistically convergent to 0. Construct the following fuzzy Bernstein-type operators:

T F
n (f ;x) =

{
(1 + an)⊙⊕n

k=0

(
n
k

)
xk(1− x)n−k ⊙ f( kn ) , n ∈ N

f(x) , n = 0

where f ∈ CF[0, 1], x ∈ [0, 1].
Notice that since the sequence (an) is not convergent, {T F

n (f)}n∈N0
is not fuzzy convergent to f but still

one can approximate f by T F
n (f) with the use of Pp-statistical convergence.

Now recall the modulus of continuity in fuzzy setting. Let f be a function defined on [a, b] and fuzzy
number valued. Then the fuzzy modulus of continuity of f is defined in [18] as follows:

wF
1 := sup

x∈[a,b]:|x−y|≤δ

d(f(x), f(y))

for any 0 < δ ≤ b − a. The rates of this approximation have been presented in [3] by this notion.
Statistical rate of convergence has been defined and studied in [11], [15]. By modificating these concepts,
Pp− statistical rate of convergence has been introduced in [6].
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Definition 2.5. Let (an) be a positive non-increasing sequence of real numbers and let Pp be regular. A
sequence x = (xn) is Pp-statistically converges to the number l with rate o (an) if for every ε > 0

lim
0<t→R−

 1

p (t)

∑
n:|xn−l|≥εan

pnt
n

 = 0

and we denote it by xn − l = stPp
− o (an), as n → ∞.

Theorem 2.6. Let Pp be regular and Tn be fuzzy positive linear operators n ∈ N0 from CF[a, b] into itself.

Suppose that there exists a corresponding positive linear operators T̃n of from C[a, b] into itself with the
property

{Tn(f ;x)}(r)± = ˜{T}n(f
(r)
± ;x)

for all x ∈ [a, b], r ∈ [0, 1], n ∈ N0, f ∈ CF[a, b]. If (an), (bn) are positive non-increasing sequences and

also the operators ˜{Tn} satisfy the following conditions:

∥ ˜{Tn}(1)− 1∥ = stPp − o(an)

wF
1(f, νn) = stPp

− o(bn),

then for all f ∈ CF[a, b], we have
d∗(Tn(f), f) = stPp − o(cn).

Here νn :=

√
∥ ˜{Tn}(ϕ)∥, ϕ(y) = (y − x)2 for each x ∈ [a, b] and cn = max{an, bn, anbn}, for every

n ∈ N0.

Proof. By Theorem 3 of [2], one can get, for each n ∈ N0 and f ∈ CF[a, b], that

d∗(Tn(f), f) ≤ H∥ ˜{Tn}(1)− 1∥+ ∥ ˜{Tn}(1) + 1∥wF
1(f, νn)

where H := d∗(f, χ0) and χ0 denotes the neutral element for ⊕. Then we have that

d∗(Tn(f), f) ≤ H∥ ˜{Tn}(1)− 1∥+ ∥ ˜{Tn}(1) + 1∥wF
1(f, νn) + 2wF

1(f, νn).

By using the similar idea in Lemma 4 in [11] and taking care of the right hand side of the following
equality we obtain the desired result. Therefore the proof is completed. □

3. Conclusion

The fact lying under uncertainly defined sets play important role in human thinking, pattern recog-
nition and machine learning and this motivates Zadeh to introduce fuzzy sets by attaching a grade of
membership to each element. Since it is effective to overcome uncertainty, fuzzy theory has become an
active area of research. Fuzzy logic and fuzzy settings of well-known concepts have been studied. In the
present paper, by considering fuzzy positive linear operators we have obtained Korovkin type approxi-
mation results via Pp-statistical convergence. We have also studied the rate of this approximation with
the use of fuzzy modulus of continuity. It is important to mention that our results are stronger than
the results in the existing literature since Pp-statistical convergence is flexing the critical weakness of
ordinary convergence. In order to show the strength of our results, we have provided some examples.

References

[1] M. Aiyub, K. Saini and K. Raj, Korovkin type approximation theorem via lacunary equi-statistical
convergence in fuzzy spaces, J. Math. Computer Sci. 25 (2022), 312-321.

[2] G.A. Anastassiou, On basic fuzzy Korovkin theory, Stud. Univ. Babes-Bolyai Math. 50 (2005), 3-10.
[3] G.A. Anastassiou and O. Duman, Statistical fuzzy approximation by fuzzy positive linear operators,

Comput. and Math. Appl. 55 (2008), 573-580.
[4] G.A. Anastassiou and O. Duman, High order statistical fuzzy Korovkin theory, Stoch. Anal. Appl.

27(3) (2009), 543-554.

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

7

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

7



[5] G.A. Anastassiou and O. Duman, Towards Intelligent Modelling: Statistical approximation theory,
Intelligent Systems Reference Library, Springer-Verlag, Berlin 14 (2011).
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[23] F. Nuray and E. Savaş, Statistical convergence of sequences of fuzzy numbers, Math. Slovaca. 45

(1995), 269-273.
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Email address: emretas86@hotmail.com

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

8

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

8



THE STEINHAUS THEOREM FOR λ-REGULAR MATRICES IN
ULTRAMETRIC FIELDS
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Abstract. Throughout the present paper, K denotes a non-trivially valued, ultramet-
ric (or non-archimedean) field, which is complete under the valuation of K. Sequences,
infinite series and infinite matrices have their entries in K. The purpose of the present
paper is to introduce λ-regular matrices and prove the Steinhaus theorem for λ-regular
matrices in K.
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1. Introduction and Preliminaries

In the present paper, K denotes a non-trivially valued, ultrametric (or non-archimedean) field, which
is complete under the valuation of K. Entries of sequences, infinite series and infinite matrices are in K.

For a given sequence x = {xk} in K and an infinite matrix A = (ank), ank ∈ K, n, k = 0, 1, 2, . . . ,
define

(Ax)n =
∞∑
k=0

ankxk, n = 0, 1, 2, . . . ,

where we suppose that the series on the right converge. A(x) = {(Ax)n} is called the A-transform of the
sequence x = {xk}.

If X,Y are sequence spaces, we write

A = (ank) ∈ (X,Y ),

if {(Ax)n} ∈ Y , whenever x = {xk} ∈ X. In what follows, c, c0 respectively denote the ultrametric
Banach spaces of convergent and null sequences in K under the ultrametric norm

∥x∥ = sup
k≥0

|xk|, x = {xk} ∈ c, c0.

Following [1], the author of the present paper introduced the analogues in ultrametrix analysis of the
concepts of λ-convergence, λ-boundedness etc. and made a study in [5, 6, 7]. We make a further study
in the present paper. For an extensive study of the above concepts of λ-convergence, λ-boundedness etc.
in the classical case, a standard reference in [1].

To make the paper self-contained, we recall the following definitions [5, 6, 7].

Definition 1.1. Let λ = {λn} be a sequence in K such that

0 < |λn| ↗ ∞, n → ∞.
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A sequence {xn} in K is said to be convergent with speed λ or λ-convergent if {xn} ∈ c with lim
n→∞

xn = s

(say) and

lim
n→∞

λn(xn − s) exists.

Let cλ denote the set of all λ-convergent sequences in K. From the definition, we have,

cλ ⊂ c.

We note that the sequences ek = {0, 0, . . . , 0, 1, 0, . . . }, 1 occurring in the kth place only, k = 0, 1, 2, . . . ;

e = {1, 1, 1, . . . };

and

eλ =

{
1

λ0
,
1

λ1
, . . .

}
,

all belong to cλ.

Definition 1.2. A sequence {xn} in K is said to be bounded with speed λ or λ-bounded, if x = {xn} ∈ c
with lim

n→∞
xn = s and the sequence

{λn(xn − s)} is bounded.

Let mλ denote the set of all λ-bounded sequences in K. Note again that

cλ ⊂ mλ ⊂ c.

We need the following results, which can be easily proved.

Theorem 1.3 (see [4]). A = (ank) ∈ (c0, c0) if and only if

sup
n,k

|ank| < ∞;(1.1)

and

lim
n→∞

ank = 0, k = 0, 1, 2, . . . .(1.2)

Theorem 1.4 (Kojima-Schur) (see [4]). A = (ank) ∈ (c, c), i.e., A is conservative or convergence
preserving if and only if (1.1) holds,

lim
n→∞

ank = ak, k = 0, 1, 2, . . . ;(1.3)

and

lim
n→∞

∞∑
k=0

ank = a.(1.4)

In such a case,

lim
n→∞

(Ax)n =
∞∑
k=0

ak(xk − s) + sa,(1.5)

where x = {xk} ∈ c with lim
k→∞

xk = s.

Let µ = {µn} be a sequence in K such that

0 < |µn| ↗ ∞, n → ∞.

The following characterization of the matrix class (cλ, cµ) was proved in [5].
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Theorem 1.5 (see [5]). A = (ank) ∈ (cλ, cµ) if and only if

A(e), A(eλ), A(ek) ∈ cµ, k = 0, 1, 2, . . . ;(1.6)

sup
n,k

∣∣∣∣ankλk

∣∣∣∣ < ∞;(1.7)

and

sup
n,k

∣∣∣∣µn(ank − ak)

λk

∣∣∣∣ < ∞,(1.8)

where lim
n→∞

ank = ak, k = 0, 1, 2, . . . .

Definition 1.6. If A = (ank) ∈ (cλ, cλ), A is said to be λ-convergence preserving or λ-conservative.

Remark 1.7. Note that we get a characterization of λ-conservative matrices by putting µ = λ, i.e.,
µn = λn, n = 0, 1, 2, . . . in Theorem 1.5. Thus A = (ank) is λ-conservative if and only if

A(e), A(eλ), A(ek) ∈ cλ, k = 0, 1, 2, . . . ;(1.9)

(1.7) holds and

sup
n,k

∣∣∣∣λn(ank − ak)

λk

∣∣∣∣ < ∞,(1.10)

where lim
n→∞

ank = ak, k = 0, 1, 2, . . . .

We need the following characterization too (see [7]).

Theorem 1.8. A = (ank) ∈ (mλ, cµ) if and only if

A(e), A(ek) ∈ cµ, k = 0, 1, 2, . . . ;(1.11)

lim
k→∞

ank
λk

= 0, n = 0, 1, 2, . . . ;(1.12)

lim
n→∞

sup
k≥0

∣∣∣∣an+1,k − ank
λk

∣∣∣∣ = 0;(1.13)

lim
k→∞

an,k − ak
λk

= 0, n = 0, 1, 2, . . . ;(1.14)

and

lim
n→∞

sup
k≥0

∣∣∣∣µn+1(an+1,k − ak)− µn(ank − ak)

λk

∣∣∣∣ = 0.(1.15)

2. Characterization of λ-regular matrices and Steinhaus theorem for λ-regular
matrices

Definition 2.1. A conservative matrix A = (ank) is said to be τ -multiplicative if there exists τ ∈ K
such that

lim
n→∞

(Ax)n = τ lim
k→∞

xk,

x = {xk} ∈ c.

Theorem 2.2. The matrix A = (ank) is τ -multiplicative if and only if A ∈ (c0, c0) and

lim
n→∞

∞∑
k=0

ank = τ.(2.1)

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

11



Proof. Let A = (ank) be τ -multiplicative, i.e.,

lim
n→∞

(Ax)n = τ lim
k→∞

xk,

x = {xk} ∈ c. If x = {xk} ∈ c0, then

lim
n→∞

(Ax)n = τ.0 = 0.

So A ∈ (c0, c0). For the sequence x = {xk}, xk = 1, k = 0, 1, 2, . . . , lim
k→∞

xk = 1. For this sequence,

lim
n→∞

(Ax)n = τ.1 = τ,

i.e., lim
n→∞

∞∑
k=0

ank = τ,

i.e., (2.1) holds.
Conversely, let A ∈ (c0, c0) and (2.1) holds. Let x = {xk} ∈ c with lim

k→∞
xk = s (say). Consider the

sequence y = {yk}, where yk = xk − s, k = 0, 1, 2, . . . . Then y = {yk} ∈ c0. Since A ∈ (c0, c0),

lim
n→∞

(Ay)n = 0,

i.e., lim
n→∞

∞∑
k=0

ankyk = 0,

i.e., lim
n→∞

∞∑
k=0

ank(xk − s) = 0,

i.e., lim
n→∞

∞∑
k=0

ankxk − s

∞∑
k=0

ank = 0,

i.e., lim
n→∞

(Ax)n − sτ = 0, using (2.1),

i.e., lim
n→∞

(Ax)n = τs,

i.e., lim
n→∞

(Ax)n = τ lim
k→∞

xk,

i.e., A is τ -multiplicative, completing the proof of the theorem. □

Remark 2.3. A = (ank) is regular if and only if it is 1-multiplicative.

Definition 2.4. A λ-conservative matrix A = (ank) is said to be λ-regular if for any x = {xk} ∈ cλ,

lim
n→∞

(Ax)n = 0 if and only if lim
n→∞

xn = 0;(2.2)

and

lim
n→∞

dn(x) = 0 if and only if lim
n→∞

bn(x) = 0,(2.3)

where,

bn(x) = λn

{
xn − lim

n→∞
xn

}
and

dn(x) = λn

{
(Ax)n − lim

n→∞
(Ax)n

}
.

We now have the following characterization of λ-regular matrices in K. The proof of this characteri-
zation is very similar to that of its analogue in the classical case (for details, see [2]).
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Theorem 2.5. A matrix A = (ank) is λ-regular if and only if (1.2) holds;

A(e) ∈ cλ\zλ(2.4)

and the infinite matrix B = (bnk), defined by

bnk =
λnank
λk

, n, k = 0, 1, 2, . . .

is τ -multiplicative, where τ is defined by

τ = lim
n→∞

λn

∞∑
k=0

ank
λk

̸= 0,

zλ =
{
x = {xk} ∈ c0

/
{bn(x)} ∈ c

}
.

As a consequence of Theorem 1.8 and Theorem 2.5, we prove the Steinhaus theorem for λ-regular
matrices in K.

Theorem 2.6. A λ-regular matrix A = (ank) cannot belong to the class (mλ, cλ).

Proof. Suppose A = (ank) is λ-regular and belongs to the class (mλ, cλ). In view of (1.14) with µn = λn,
n = 0, 1, 2, . . . ,

λn+1an+1,k − λnank → 0, n → ∞, uniformly with respect to k,

i.e., λnan,k → l (say), n → ∞, uniformly with respect to k.

However, for x = ek, k = 0, 1, 2, . . . ,

lim
n→∞

(ek)n = 0.

Since A is λ-regular,

lim
n→∞

(Aek)n = 0.

Also for this sequence x = ek,

lim
n→∞

bn(x) = 0.

Since A is λ-regular,

lim
n→∞

dn(x) = 0,

i.e., lim
n→∞

λn(Aek)n = 0,

i.e., lim
n→∞

λnank = 0, k = 0, 1, 2, . . . .

Consequently,

λnank → 0, n → ∞, uniformly with respect to k.(2.5)

Now,

τ = lim
n→∞

∞∑
k=0

λnank
λk

=
∞∑
k=0

lim
n→∞

λnank
λk

= 0, using (2.5),

which is a contradiction, proving the theorem. □
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PELL AND PELL-LUCAS, AND MODIFIED PELL NUMBERS WITH
AN EXPONENTIAL GROWER FACTOR

XHEVAT Z. KRASNIQI

Abstract. In this paper we have generalized the classical Pell, Pell-Lucas, and Mod-
ified Pell numbers. The new numbers are named Pell, Pell-Lucas, and Modified Pell
numbers with an exponential grower factor, respectively. Moreover, we have listed their
first ten terms, then we have found the families of generating functions with some of
their particular graphs, their Binet’s formulae, their related basic identities and sums.
Our results covers all basic results for classical Pell numbers, Pell-Lucas numbers, and
Modified Pell numbers obtain previously by others.
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1. Introduction

Since the nth Fibonacci number Fn is defined recursively by

(1.1) Fn = Fn−1 + Fn−2, n ∈ {2, 3, . . . },

with initial terms F0 = F1 = 1, there are several other well-known of the Fibonacci type numbers defined
by linear recurrence relation.

Let us recall some of them.
1◦ Lucas numbers:

(1.2) Ln = Ln−1 + Ln−2, n ∈ {2, 3, . . . },

with initial terms F0 = 2, F1 = 1.
2◦ Pell numbers:

(1.3) Pn = 2Pn−1 + Pn−2, n ∈ {2, 3, . . . },

with initial terms P0 = 0, P1 = 1.
3◦ Pell-Lucas numbers:

(1.4) Qn = 2Qn−1 +Qn−2, n ∈ {2, 3, . . . },

with initial terms Q0 = Q1 = 2.
4◦ Let k ≥ 1 be an integer. The k-Pell numbers (see [1]):

(1.5) Pk,n = 2Pk,n−1 + kPk,n−2, n ∈ {2, 3, . . . },

with initial terms Pk,0 = 0, Pk,1 = 1.
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5◦ Generalization of one-parameter of Pell numbers (see [5]):

(1.6) Pk,n = kPk,n−1 + (k − 1)Pk,n−2, k ≥ 2, n ∈ {2, 3, . . . },
with initial terms Pk,0 = 0, Pk,1 = 1.

6◦ Also, the generalized one-parameter Pell-Lucas numbers (see [5]) are defined by:

(1.7) Qk,n = kQk,n−1 + (k − 1)Qk,n−2, k ≥ 2, n ∈ {2, 3, . . . },
with initial terms Qk,0 = Qk,1 = 2.

7◦ In the accessible literature we also encounter (not so rarely) the so-called modified Pell numbers
(see [3]):

(1.8) qn = 2qn−1 + qn−2, n ∈ {2, 3, . . . },
with initial terms q0 = q1 = 1.

In this paper, we are going to introduce and study as well a new two-parameter generalization of the
Pell numbers, the Pell-Lucas numbers, and the modified Pell numbers which is the main objective of this
paper.

Let r ≥ 1 be an integer and a ≥ 1 a real number with same meaning throughout this paper. We define
recursively, the two-parameter generalized of the Pell numbers Pa,r,n (we named these Pell numbers with
an exponential grower factor), as in the sequel:

(1.9) Pa,r,n = 2arPa,r,n−1 + ar−1Pa,r,n−2, n ∈ {2, 3, . . . },
with initial terms Pa,r,0 = 0, Pa,r,1 = 1.

In the following, we recursively the two-parameter generalized of the Pell-Lucas numbers Qa,r,n (we
named these Pell-Lucas numbers with an exponential grower factor) by:

(1.10) Qa,r,n = 2arQa,r,n−1 + ar−1Qa,r,n−2, n ∈ {2, 3, . . . },
with initial terms Qa,r,0 = Qa,r,1 = 2.

The two-parameter generalized of the Pell-Lucas numbers qa,r,n (we named these Pell numbers with
an exponential grower factor) by:

(1.11) qa,r,n = 2arqa,r,n−1 + ar−1qa,r,n−2, n ∈ {2, 3, . . . },
with initial terms qa,r,0 = qa,r,1 = 1.

One can observe that putting a = 1 in our new numbers Pr,a,n, Qr,a,n, and qr,a,n we obviously obtain
the classical Pell numbers, the classical Pell-Lucas numbers, and the modified classical Pell numbers,
respectively.

Next, in Table 1, we have shown the first terms of the sequence {Pr,a,n} for a = 2, r ∈ {1, 2, 3, 4}, and
n ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

First ten Pell numbers with exponential grow factor 2r, r ∈ {1, 2, 3, 4}

n 0 1 2 3 4 5 6 7 8 9

P1,r,n 0 1 2 5 12 29 70 169 408 985
P2,1,n 0 1 4 17 72 305 1292 5473 23184 98209
P2,2,n 0 1 8 68 560 4616 38048 313616 2585024 21307424
P2,3,n 0 1 16 260 4224 68624 1114880 18112576 294260736 4780622080
P2,4,n 0 1 32 1032 33280 540736 17569792 702791680 23613800448 764637347840

Table 1

Remark 1.1. Note that numbers in third row of the Table 1 are Pell’s numbers. Also, it is interesting
to observe (in fourth column of the present table) that the sequence P1,r,2, P2,1,2, P2,2,2, P2,3,2, P2,4,3, . . . ,
forms a geometric sequence with its quotient 2.
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Table 2 shows the first terms of the sequence {Qr,a,n} for a = 2, r ∈ {1, 2, 3, 4}, and n ∈
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

First ten Pell-Lucas numbers with exponential grow factor 2r, r ∈ {1, 2, 3, 4}

n 0 1 2 3 4 5 6 7 8 9

Q1,r,n 2 2 6 14 34 82 198 478 1154 2786
Q2,1,n 2 2 10 42 178 754 3194 13530 57314 242786
Q2,2,n 2 2 20 164 1352 11144 91856 757136 6240800 51440672
Q2,3,n 2 2 40 648 7648 124960 2029952 32979072 535784960 8704475648
Q2,4,n 2 2 80 2576 83072 2678912 86389760 2785903616 89840033792 2897168310272

Table 2

Remark 1.2. Note that numbers in third row of the Table 2 are Pell-Lucas’ numbers. Also, it is inter-
esting to observe (fourth column of the present table) that the sequence Q2,1,2, Q2,2,2, Q2,3,2, Q2,4,2, . . . ,
forms a geometric sequence with its quotient 2.

The recurrences (1.9), (1.10) and (1.11) generate their characteristic equation

(1.12) s2 − 2ars− ar−1 = 0.

Equation (1.12) has two distinct roots

(1.13) s1 = ar −
√
a2r + ar−1,

and

(1.14) s2 = ar +
√
a2r + ar−1.

Here we easy can conclude that s1 < 0 < s2 and consequently |s1| < |s2|. Also, the following
relationship between s1 and s2 hold true:

(1.15) s1 + s2 = 2ar,

(1.16) s1 − s2 = −2
√
a2r + ar−1,

and

(1.17) s1s2 = −ar−1.

These equalities are very usable and will be used later in this paper.
Next section is devoted to the generating functions of Pell numbers Pa,r,n, Pell-Lucas numbers Qa,r,n,

and modified Pell numbers qa,r,n with an exponential grower factor, respectively.

2. Generating functions of sequences {Pa,r,n}, {Qa,r,n}, and {qa,r,n}

Let us find first the generating functions of Pell numbers Pa,r,n with an exponential grower factor.
Assume that Pa,r,k are coefficients of some power series with center at the origin and fa,r(x) are the sums
of the these series, i.e.,

(2.1) fa,r(x) =
∞∑
k=0

Pa,r,kx
k.

So, the analytic functions fa,r(x) are generating functions for the sequences {Pa,r,k}. Based on (1.9)
and taking into account the initial conditions Pa,r,0 = 0 and Pa,r,1 = 1, we get
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fa,r(x) =
∞∑
k=0

Pa,r,kx
k

= Pa,r,0 + Pa,r,1x+
∞∑
k=2

[
2arPa,r,k−1 + ar−1Pa,r,k−2

]
xk

= x+ 2arx
∞∑
k=2

Pa,r,k−1x
k−1 + ar−1x2

∞∑
k=2

Pa,r,k−2x
k−2

= x+ 2arx
∞∑
k=0

Pa,r,kx
k + ar−1x2

∞∑
k=0

Pa,r,kx
k.

So, by (2.1) we find that

fa,r(x) = x+ 2arxfa,r(x) + ar−1x2fa,r(x),

and thus, the generating functions for the sequences {Pa,r,k} are

(2.2) fa,r(x) =
x

1− 2arx− ar−1x2
, (a ≥ 1, r ≥ 1).

The graphs of the functions fa,r(x) for various values of a and r are shown in Figure 1.

Figure 1. Graphs of generating functions: f1,1(x)(blue), f2,1(x)(red), and
f3,2(x)(green).

Further, we are going to find the generating functions for the sequences {Qa,r,k}. Indeed, similarly
we suppose that Qa,r,k are coefficients of some power series with center at the origin and ga,r(x) are the
sums of the these series, i.e.,

(2.3) ga,r(x) =

∞∑
k=0

Qa,r,kx
k.
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Using (1.10) and the initial conditions Qa,r,0 = Qa,r,1 = 2, we obtain

ga,r(x) =
∞∑
k=0

Qa,r,kx
k

= Qa,r,0x
0 +Qa,r,1x+

∞∑
k=2

[
2arQa,r,k−1 + ar−1Qa,r,k−2

]
xk

= 2 + 2x+ 2arx
∞∑
k=2

Qa,r,k−1x
k−1 + ar−1x2

∞∑
k=2

Qa,r,k−2x
k−2

= 2 + 2x+ 2arx
∞∑
k=0

Qa,r,kx
k + ar−1x2

∞∑
k=0

Qa,r,kx
k.

So, by (2.3) we find that

ga,r(x) = 2(1 + x) + 2arxga,r(x) + ar−1x2ga,r(x),

and thus, the generating functions for the sequences {Qa,r,k} are

(2.4) ga,r(x) =
2(1 + x)

1− 2arx− ar−1x2
, (a ≥ 1, r ≥ 1).

Finally, we find the generating functions for the sequences {qa,r,k}. Indeed, let qa,r,k be the coefficients
of some power series with center at the origin and ha,r(x) are the sums of the these series, i.e.,

(2.5) ha,r(x) =
∞∑
k=0

qa,r,kx
k.

Using (1.11) and the initial conditions qa,r,0 = qa,r,1 = 2, we obtain

ha,r(x) =
∞∑
k=0

qa,r,kx
k

= qa,r,0x
0 + qa,r,1x+

∞∑
k=2

[
2arqa,r,k−1 + ar−1qa,r,k−2

]
xk

= 1 + x+ 2arx
∞∑
k=2

qa,r,k−1x
k−1 + ar−1x2

∞∑
k=2

qa,r,k−2x
k−2

= 1 + x+ 2arx
∞∑
k=0

qa,r,kx
k + ar−1x2

∞∑
k=0

qa,r,kx
k.

So, by (2.5) we find that

ha,r(x) = 1 + x+ 2arxha,r(x) + ar−1x2ha,r(x),

and thus, the generating functions for the sequences {qa,r,k} are

(2.6) ha,r(x) =
1 + x

1− 2arx− ar−1x2
, (a ≥ 1, r ≥ 1).

Of course, if we take a = 1 in (2.2), (2.4), and (2.6) we clearly obtain functions

f(x) =
x

1− 2x− x2
,

g(x) =
2(1 + x)

1− 2x− x2
,
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and

h(x) =
1 + x

1− 2x− x2
,

which, indeed, are the generating functions of the classical Pell numbers (1.3), classical Pell-Lucas numbers
(1.4), and the modified classical Pell numbers (1.8), respectively.

3. Some explicit formulae

Here in this section, we are going to prove some very useful explicit formulae for the general terms of
the sequences {Pa,r,k}, {Qa,r,k}, and {qa,r,k}. Then, we will apply them to derive several identities. To
do this, we start with the following theorem.

Theorem 3.1 (Generalized Binet’s formulae). The nth terms of the sequences {Pa,r,n}, {Qa,r,n},
and {qa,r,n} are of the form

(3.1) Pa,r,n =
sn1 − sn2
s1 − s2

,

(3.2) Qa,r,n =
2(1− s2)

s1 − s2
sn1 − 2(1− s1)

s1 − s2
sn2 ,

and

(3.3) qa,r,n =
1− s2
s1 − s2

sn1 − 1− s1
s1 − s2

sn2 ,

where s1 and s2 are given in (1.13) and (1.14), respectively.

Proof. For the distinct roots s1, s2 of the equation (1.2), the numbers sn1 , s
n
2 are linearly invariant and

form the basis for the space of all solutions of the equations (1.9), (1.10), and (1.11). Whence,

(3.4) Pa,r,n = psn1 + qsn2 , p, q ∈ R,
is the solution of the recurrence (1.9). If we put n = 0 and n = 1 in (3.4) we get p + q = 0 and
ps1 + qs2 = 1. Subsequently, we find that p = 1

s1−s2
and q = − 1

s1−s2
. Hence, putting these values to

(3.4) we immediately obtain (3.1).
Similarly, the solution of the recurrence (1.10) is

(3.5) Qa,r,n = usn1 + vsn2 , u, v ∈ R.
If we put Qa,r,0 = 2 and Qa,r,1 = 2 in (3.5) we get u+ v = 2 and us1 + vs2 = 2. Whence, we find that

u = 2(1−s2)
s1−s2

and v = − 2(1−s1)
s1−s2

. Thus, putting these values to (3.5) we immediately obtain (3.2).

At the end we prove (3.3). The solution of the recurrence (1.11) is

(3.6) qa,r,n = tsn1 + wsn2 , t, w ∈ R.
If we put qa,r,0 = 1 and Pa,r,1 = 1 in (3.6) we get t + w = 1 and ts1 + ws2 = 1. Hence, we find that

t = 1−s2
s1−s2

and w = − 1−s1
s1−s2

. Thus, putting these values to (3.6) we immediately obtain (3.3).
The proof is completed. □

Using relations (1.13) and (1.14) we have:

Corollary 3.2. The nth terms of the sequences {Pa,r,n}, {Qa,r,n}, and {qa,r,n} are of the form

Pa,r,n =

(
ar +

√
a2r + ar−1

)n −
(
ar −

√
a2r + ar−1

)n
2
√
a2r + ar−1

,

Qa,r,n =

(
1− ar +

√
a2r + ar−1

)(
ar +

√
a2r + ar−1

)n
· · ·

· · ·
−
(
1− ar −

√
a2r + ar−1

)(
ar −

√
a2r + ar−1

)n
√
a2r + ar−1

,

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

20



and

qa,r,n =

(
1− ar +

√
a2r + ar−1

)(
ar +

√
a2r + ar−1

)n
· · ·

· · ·
−
(
1− ar −

√
a2r + ar−1

)(
ar −

√
a2r + ar−1

)n
2
√
a2r + ar−1

.

Another consequence, for a = 1 and r = 1, is:

Corollary 3.3 (Classical Binet’s formulae). The nth terms of the sequences {Pn}, {Qn}, and {qn}
are of the form

Pn =

√
2
[(
1 +

√
2
)n −

(
1−

√
2
)n]

4
,

Qn =
(
1 +

√
2
)n

+
(
1−

√
2
)n

,

and

qn = 2
[(
1 +

√
2
)n

+
(
1−

√
2
)n]

.

Next we are going to show the relationships between nth terms of the sequences:

(1) {Pa,r,n} and {Qa,r,n},
(2) {Pa,r,n} and {qa,r,n}, and
(3) {Qa,r,n} and {qa,r,n}.

Corollary 3.4. For all a ≥ 1, r ≥ 1, and n ≥ 0, we have

(i) Qa,r,n = 2
(
Pa,r,n + ar−1Pa,r,n−1

)
,

(ii) qa,r,n = Pa,r,n + ar−1Pa,r,n−1, and
(iii) Qa,r,n = 2qa,r,n.

Proof. Based on Theorem 3.1 and (1.17) we have

Qa,r,n =
2(1− s2)

s1 − s2
sn1 − 2(1− s1)

s1 − s2
sn2

=
2

s1 − s2

[
(sn1 − sn2 )− s1s2(s

n−1
1 − sn−1

2 )
]

= 2

(
sn1 − sn2
s1 − s2

− s1s2
sn−1
1 − sn−1

2

s1 − s2

)
= 2

(
Pa,r,n + ar−1Pa,r,n−1

)
.

Equality (ii) has been proved in very similar way, while (iii) is obvious.
The proof is completed. □

As a special case, for a = 1 and r = 1, we have:

Corollary 3.5 (Basic classical relationships formulae). For all n ≥ 0, we have

(i) Qn = 2 (Pn + Pn−1),
(ii) qn = Pn + Pn−1, and
(iii) Qn = 2qn.

The following lemma is not important only for itself but also for other applications.

Lemma 3.6. For all a ≥ 1, r ≥ 1, and n ≥ 0, we have

lim
n→∞

Pa,r,n+1

Pa,r,n
= s2.
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Proof. Inequality
∣∣∣ s1s2 ∣∣∣ < 1 implies limn→∞

(
s1
s2

)n

= 0, and consequently

lim
n→∞

Pa,r,n+1

Pa,r,n
= lim

n→∞

sn+1
1 − sn+1

2

sn1 − sn2
= s2.

The proof is completed. □

Putting a = 1 and r = 1 in this lemma we obtain:

Corollary 3.7. For all n ≥ 0, we have

lim
n→∞

Pn+1

Pn
= 1 +

√
2.

We know that the number 1 +
√
2 is well-known as silver ratio.

Remark 3.8. Note that we can obtain the ”silver ratios” as many as we wish. For example, for the
sequence {P2,1,n} the ”silver ratio” is

lim
n→∞

P2,1,n+1

P2,1,n
= 2 +

√
5.

Lemma 3.6 enable us to conclude that the radius of convergence of the series (2.1) is 1
r2
. So, we can

write

fa,r(x) =

∞∑
k=0

Pa,r,kx
k, ∀x ∈

(
− 1

r2
,
1

r2

)
.

Based on this fact and some prior knowledge we can prove easily next theorem which shows another
form of the numbers Pa,r,n.

Theorem 3.9. For all a ≥ 1, r ≥ 1, and n ≥ 0, we have

Pa,r,n =
f
(n)
a,r (0)

n!
,

where f
(n)
a,r denotes the n-th derivative of the function fa,r(x).

4. Some basic related identities

Generalized Binet’s formulae (3.1), (3.2), and (3.3) given in the previous section are very useful to
derive some identities for numbers Pa,r,n, Qa,r,n, and qa,r,n. Here we give those in several theorems.

Theorem 4.1 (Generalized Catalan’s identities). For all a ≥ 1, r ≥ 1, s ≥ 1, and n ≥ 0, we have

(4.1) Pa,r,n−sPa,r,n+s − P 2
a,r,n = −

(
−ar−1

)n−s
P 2
a,r,s,

(4.2) Qa,r,n−sQa,r,n+s −Q2
a,r,n = 4(2ar + ar−1 − 1)

(
−ar−1

)n+2−s
Q2

a,r,s,

and

(4.3) qa,r,n−sqa,r,n+s − q2a,r,n = (2ar + ar−1 − 1)
(
−ar−1

)n+2−s
q2a,r,s,

Proof. Let us prove first (4.1). Namely, using (3.1) of Theorem 3.1, (1.16) and (1.17) we get
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Pa,r,n−sPa,r,n+s − P 2
a,r,n

=
(sn−s

2 − sn−s
1 )(sn+s

2 − sn+s
1 )− (sn2 − sn1 )

2

(s2 − s1)2

=
2(s1s2)

n − sn+s
1 sn−s

2 − sn+s
2 sn−s

1

(s2 − s1)
2

=
2
(
−ar−1

)n −
(
−ar−1

)n ( s1
s2

)s

−
(
−a(r−1)

)n ( s2
s1

)s

(s2 − s1)
2

= −
(
−ar−1

)n
(s2 − s1)2

[
s2s1 − 2(s1s2)

s + s2s2
(s1s2)s

]
= −

(
−ar−1

)n
(s2 − s1)2

[
(ss1 − ss2)

2(
−a(r−1)

)s
]

= −
(
−ar−1

)n
(−ar−1)

s

(
ss1 − ss2
s2 − s1

)2

= −
(
−ar−1

)n−s
P 2
a,r,s.

For the proof of (4.2) first (for short notation) we denote y = 2(1−s2)
s1−s2

and z = − 2(1−s1)
s1−s2

. Now using

(3.2) of Theorem 3.1, (1.15) and (1.17) to obtain

Qa,r,n−sQa,r,n+s −Q2
a,r,s

=
(
ysn−s

1 + zsn−s
2

) (
ysn+s

1 + zsn+s
2

)
− (ysn1 + zsn2 )

2

= yz
(
sn−s
1 sn+s

2 − 2sn1 s
n
2 + sn+s

1 sn−s
2

)
= yz (s1s2)

n

((
s1
s2

)s

− 2 +

(
s2
s1

)s)
= −4

(1− s2)(1− s1)

(s1 − s2)2
(s1s2)

n (ss1 − ss2)
2

(s1s2)
s

= −4(1 + s1s2 − (s1 + s2)) (s1s2)
n−s

(
ss1 − ss2
s1 − s2

)2

= −4(1− ar−1 − 2ar)
(
−ar−1

)n−s
Q2

a,r,s

= 4(2ar + ar−1 − 1)
(
−ar−1

)n+2−s
Q2

a,r,s.

Finally, taking into account that qa,r,n = 1
2Qa,r,n, we immediately obtain (4.3).

The proof is completed. □

Putting the values a = 1 and r = 1 into relations (4.1) and (4.2) we obtain the following corollary.

Corollary 4.2 (Classical Catalan’s identities). For all s ≥ 1 and n ≥ 0, we have

Pn−sPn+s − P 2
n = (−1)

n+1−s
P 2
s ,

and

Qn−sQn+s −Q2
n = 8 (−1)

n+2−s
Q2

s,

and

qn−sqn+s − q2n = 2 (−1)
n+2−s

q2s .

Moreover, inserting values a = 1, r = 1, and s = 1 into relations (4.1) and (4.2), imply next corollary.
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Corollary 4.3 (Classical Simpson’s identities [2], [4]). For all n ≥ 0, we have

Pn−1Pn+1 − P 2
n = (−1)

n
,

Qn−1Qn+1 −Q2
n = 8 (−1)

n+1
,

and
qn−1qn+1 − q2n = 2 (−1)

n+1
.

Some other identities are given in next theorem.

Theorem 4.4. Let m,n be two positive integers such that m ≥ n ≥ 0. Then, for all a ≥ 1 and r ≥ 1,
we have

(4.4) Pa,r,mPa,r,n+1 − Pa,r,m+1Pa,r,n =
(
− ar−1

)n
Pa,r,m−n,

(4.5) Qa,r,mQa,r,n+1 −Qa,r,m+1Qa,r,n = 4(1− ar−1 − 2ar)(−ar−1)nPa,r,m−n,

and

(4.6) qa,r,mqa,r,n+1 − qa,r,m+1qa,r,n = (1− ar−1 − 2ar)(−ar−1)nPa,r,m−n.

Proof. For m ≥ n ≥ 0, we have

Pa,r,mPa,r,n+1 − Pa,r,m+1Pa,r,n

=
(sm1 − sm2 )

(
sn+1
1 − sn+1

2

)
−

(
sm+1
1 − sm+1

2

)
(sn1 − sn2 )

(s1 − s2)
2

=
sn1 s

m+1
2 − sn+1

1 sm2 + sm+1
1 sn2 − sm1 sn+1

2

(s1 − s2)
2

=
sn1 s

m
2 (s2 − s1)− sm1 sn2 (s2 − s1)

(s1 − s2)
2

= (s1s2)
n s

m−n
2 − sm−n

1

s2 − s1

=
(
− ar−1

)n
Pa,r,m−n.

As in the proof of Theorem 3.9, let y = 2(1−s2)
s1−s2

and z = − 2(1−s1)
s1−s2

. Then, for m ≥ n ≥ 0, we obtain

Qa,r,mQa,r,n+1 −Qa,r,m+1Qa,r,n

= (ysm1 + zsm2 )
(
ysn+1

1 + zsn+1
2

)
−

(
ysm+1

1 + zsm+1
2

)
(ysn1 + zsn2 )

= yz
[
sm1 sn2 (s2 − s1)− sn1 s

m
2 (s2 − s1)

]
= −4

(1− s2)(1− s1)

(s1 − s2)2
(−ar−1)n(s2 − s1)

(
sm−n
2 − sm−n

1

)
= −4(1 + s1s2 − (s1 + s2))(−ar−1)n

sm−n
2 − sm−n

1

s1 − s2

= 4(1− ar−1 − 2ar)(−ar−1)nPa,r,m−n.

Relation (4.6) is a direct consequence of (4.5).
The proof is completed. □

For a = r = 1 in (4.4) and (4.5) we obtain next corollary.

Corollary 4.5 (Classical d’Ocagne’s identities [2], [4]). For all m ≥ n ≥ 0, we have

PmPn+1 − Pm+1Pn = (−1)nPm−n,

and
QmQn+1 −Qm+1Qn = 8(−1)n+1Pm−n,
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qmQn+1 − qm+1qn = 2(−1)n+1Pm−n.

Generalized Binet’s formulae (3.1), (3.2), and (3.3), allow us to express the sum of the first terms of
sequences Pa,r,n, Qa,r,n, and qa,r,n in a simple form. Namely, we prove the following.

Theorem 4.6. For all a ≥ 1, r ≥ 1, and n ≥ 0, we have

(4.7)
n∑

j=0

Pa,r,j =
ar−1Pa,r,n + Pa,r,n+1 − 1

2ar + ar−1 − 1
,

(4.8)
n∑

j=0

Qa,r,j =
Qa,r,n+1 + ar−1Qa,r,n + 4(1− ar)

2ar + ar−1 − 1
,

and

(4.9)
n∑

j=0

qa,r,j =
qa,r,n+1 + ar−1qa,r,n + 4(1− ar)

2(2ar + ar−1 − 1)
.

Proof. Using generalized Binet’s formulae we have

n∑
j=0

Pa,r,j =
1

s1 − s2

n∑
j=0

(sj1 − sj2)

=
1

s1 − s2

(
1− sn+1

1

1− s1
− 1− sn+1

2

1− s2

)
=

s1 − s2 − (sn+1
1 − sn+1

2 ) + s1s2(s
n
1 − sn2 )

(1− s1)(1− s2)(s1 − s2)

=
1

1− (s1 + s2) + s1s2

(
1− sn+1

1 − sn+1
2

s1 − s2
+ s1s2

sn1 − sn2
s1 − s2

)
=

1

2ar + ar−1 − 1

(
ar−1Pa,r,n + Pa,r,n+1 − 1

)
,

which proves (4.7).

To prove (4.8) we use once again notations y = 2(1−s2)
s1−s2

and z = − 2(1−s1)
s1−s2

and (3.2). Namely, after
some transformations, we have

n∑
j=0

Qa,r,j =
n∑

j=0

(
ysj1 + zsj2

)
= y

1− sn+1
1

1− s1
+ z

1− sn+1
2

1− s2

=
y + z − (zr1 + ys2)− (ysn+1

1 + zsn+1
2 ) + s1s2(ys

n
1 + zsn2 )

(1− s1)(1− s2)
.

Since

y + z = 2,

s1s2 = −ar−1,

zs1 + ys2 = 2(2ar − 1),

(1− s1)(1− s2) = 1− ar−1 − 2ar,
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then we get
n∑

j=0

Qa,r,j =
2− 2(2ar − 1)−Qa,r,n+1 − ar−1Qa,r,n

1− ar−1 − 2ar

=
Qa,r,n+1 + ar−1Qa,r,n + 4(1− ar)

2ar + ar−1 − 1
.

Relation (4.9) follows from relation (4.8).
The proof is completed. □

If we take specific values a = r = 1 in Theorem 4.6, then we obtain next well-known equalities for Pell
and Pell-Lucas numbers.

Corollary 4.7. For all n ≥ 0, we have
n∑

j=0

Pj =
Pn + Pn+1 − 1

2
,

n∑
j=0

Qj =
Qn+1 +Qn

2
,

and
n∑

j=0

qj =
qn+1 + qn

4
.

Some other interesting relations are shown in next statement.

Theorem 4.8. For all a ≥ 1, r ≥ 1, and n ≥ 0, we have

(i) Pa,r,3n = 4(ar + ar−1)P 3
a,r,n + 3(−ar−1)nPa,r,n,

(ii) The sequence {Pa,r,2} is a geometric one with respect to r.
(iii) The following inequality Pa+1,r,2 ≤ 2rPa,r,2 hods true.

Proof. (i) By Binet’s formula have

Pa,r,3n =
s3n1 − s3n2
s1 − s2

=
sn1 − sn2
s1 − s2

{
[s2n1 − 2(s1s2)

n + s2n2 ] + 3(s1s2)
n
}

= Pa,r,n

{
(s1 − s2)

2

(
sn1 − sn2
s1 − s2

)2

+ 3(s1s2)
n

}
= Pa,r,n

{
4(ar + ar−1)P 2

a,r,n + 3(−ar−1)n
}
.

(ii) By same argument, we also have

Pa,r,2 =
s21 − s22
s1 − s2

= s1 + s2 = 2ar,

and consequently
Pa,r+1,2

Pa,r,2
= 2a.

(iii) It is obvious that

Pa+1,r,2

Pa,r,2
=

(a+ 1)r

ar
=

(
1 +

1

a

)r

≤ 2r, ∀a, r ≥ 1.

The proof is completed. □
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Putting a = 1 into Theorem 4.8 we obtain:

Corollary 4.9. For all n ≥ 0, we have

(i) P3n = 8P 3
n + 3(−1)nPn,

(ii) The sequence {P1,r,2} is a geometric one with respect to r with its quotient 2.
(iii) The following equality P2,r,2 = 2rP1,r,2 hods true.
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Abstract. In this note we give some simple proofs for the irrationality of π2 and eq,
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a is a nonzero algebraic number. In particular we obtain the transcendence of π. In the
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1. Introduction

In this paper we try to present as elementary as possible (with complete and self-contained proofs)
basic results related to the irrationality and transcendence of some fundamental real or complex numbers.
The reader must have some knowledge of mathematics that is taught in the first year of the undergraduate
studies. Namely, he (she) has to know the basic elementary results in differential and integral calculus,
and in Linear Algebra. It would be better if the reader had some knowledge in complex function theory.
However, we do not assume such a knowledge and we reduce everything to usual Riemann integrals for a
real variable function with complex values. We also use a basic and elementary result from finite group
theory.

Trying to make an elementary presentation, the author was inspired by the main ideas of some great
mathematicians like C. Hermite [4], D. Hilbert [5], A. Hurwitz [6] and F. Lindemann [8]. Some other
nice ideas came to us from the enlightened works of A. Baker [2] and M. Waldschmidt [10]. The last but
not the least, we were encouraged by the elegant one page paper of I. Niven [9] and by the inspirational
book Proofs from THE BOOK of Aigner and Ziegler [1].

In Section 2 we make a short introduction in the long history of the attempts to prove the irrationality
and transcendence of e and π. Here we highlighted Hermite’s contribution to what we call today Hermite-
Padé approximation and the so called Hermite Principle.
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In Section 3 we apply Hermite’s Principle to supply a short and elementary proof for the irrationality
of π2 (as an immediate consequence it comes also the irrationality of π).

In Section 4 we apply the same Hermite’s Principle to prove in a simple way the irrationality of eq for
q ∈ Q \ {0}.

In Section 5 we prove that e is a transcendental number. This proof uses the original Hermite’s idea,
but extended with a very useful Hilbert’s and Hurwitz’s ideas relative to the nonzero property of an
integer which is nonzero modulo p, where p is an arbitrary prime number. In this proof we find the seeds
of the great ideas of Lindemann and Weierstrass for proving the independence over Q (the field of all
algebraic numbers-see Section 6) of a sequence of powers of e, where these powers are distinct algebraic
numbers (see also Section 6).

In Section 6 we introduce in a self-contained manner some elementary facts from algebraic number
theory. Here we assume that the reader has no previous knowledge of this topic. We use all of these for
giving self-contained presentations in sections 7 and 8.

In Section 7 we supply a complete and simple proof for a slight generalization of the famous Linde-
mann’s result [8] relative to the transcendence of π, namely we prove that eα is a transcendental number,
where α is a nonzero algebraic number. In particular we prove that π is a transcendental number. It
is clear enough that the main result of Section 5 is a direct consequence of the main theorem 7.2 from
Section 7. Theorem 7.2 is a particular case of another famous result of Weierstrass and Lindemann (see
[2]) which has a non-elementary proof. We wanted to insist on the natural evolution of mathematical
ideas and not to choose the ”shortest path”, because a clever reader who want to really understand these
deep and beautiful ideas, will enjoy our ”longer, but natural path”.

In Section 8 we apply the results obtained in Sections 6 and 7 to develop an enlightened idea of P. L.
Wantzel [11] to associate to a geometrical construction realized only with a compass and a straight-edge,
a tower of algebraic number fields. Following his idea we give complete answers to the three famous
Greek geometrical problem: squaring a circle, duplication of a cube and trisection of an angle.

2. Some historical notes

More than 2300 years ago, Aristotle (384-322 BC) said that the diameter and the circumference of
a circle are not commensurable, i.e. π is not a rational number in our modern language. But a first
proof came later in 1761, when J. H. Lambert proved the irrationality of tan q for q a nonzero rational
number. So, if π was a rational number, then tan(π/4) = 1 would be irrational, a contradiction. Lambert
used the same idea as L. Euler, who proved in 1737 that e is an irrational number by using continuous
fraction expansions. Trying to prove the transcendence of e, C. Hermite [4] discovered in 1873 a new
type of approximation with rational functions for f(x) = ebx, b ∈ N∗. Now we call his discovery, Hermite
Principle. Here is a short description of it. Let n0, n1, b be nonzero natural numbers and let z a nonzero
real number. We denote

f(x) =
xn0

n0!
(b− x)n1 ,

a polynomial of degree N = n0 + n1 in Q[x], and let us consider the following Riemann integral with a
parameter z:

I = In0,n1,b(z) =

∫ b

0

f(x)e−zxdx.

We integrate it N -times by parts, and finally find:

I =
1

zN+1

[
Fz(0)− Fz(b)e

−zb
]
,

where

Fz(x) = zNf(x) + zN−1f ′(x) + ...+ zf (N−1)(x) + f (N)(x).
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Thus,

(2.1) ezb − Fz(b)

Fz(0)
=

zN+1ebz

Fz(0)
I.

It is easy to see that Fz(b) is a polynomial in z of degree n0, with coefficients in 1
n0!

Z[b], and Fz(0) is a

polynomial in z of degree n1, with integer coefficients (in Z[b]). Since the derivatives of f(x) at x = 0 are
zero up to the order n0 − 1 inclusive, the polynomial Fz(0) in the variable z has a fixed degree n1 and
fixed coefficients (they depend only on n1 and b). So, it has a fixed minimal or maximal value on each
interval [A,B].

If we fix n1 and make n0 → ∞, we see that the approximation ezb ≈ Fz(b)
Fz(0)

is an approximation of ezb

(as a function of z) with rational functions in z, i.e.

zN+1ebz

Fz(0)
I → 0,

when n0 → ∞ and z ∈ [A,B], a closed and bounded interval which does not contain any root of Fz(0)
(see the above explanation on the polynomial Fz(0)). Indeed,∣∣∣∣zN+1ebz

Fz(0)

∣∣∣∣ I ≤ bn0Mn0

n0!
· (bM)n1+1

inf
z∈[A,B]

|Fz(0)|
· C,

where M = sup
z∈[A,B]

|z| and C = sup
x∈[0,b],z∈[A,B]

e−z(x−b). Since

(bM)n1+1

inf
z∈[A,B]

|Fz(0)|
· C

is a positive constant K, and since bn0Mn0

n0!
→ 0, when n0 → ∞, we see that zN+1ebz

Fz(0)
I goes uniformly

(relatively to z) to zero, when n0 → ∞ and when z ∈ [A,B]. We also see that I = In0,n1,b(z) itself

uniformly goes to zero, when n0 → ∞ and when z ∈ [A,B]. Hence ezb ≈ Fz(b)
Fz(0)

is indeed a uniform

approximation (relative to z) on each real interval [A,B] which does not contain any root of Fz(0). Such
type of approximation with rational functions is called Hermite-Padé approximation. If one makes z = 1
in (2.1), one gets:

(2.2) F1(0) · eb − F1(b) = ebIn0,n1,b(1).

If we assume that eb is a rational number c/d, then (2.2) becomes:

(2.3) cF1(0)− dF1(b) = debIn0,n1,b(1).

If one could prove that the left side of this last equality is always a nonzero number outside of an interval
(−ε, ε) for an ε > 0, and since the right side goes to zero, when n0 → ∞, we would obtain a contradiction.
This is in fact an example of the Hermite Principle applied to the problem of the irrationality of eb. In
[4] Hermite proved that the left side of (2.3) is always a nonzero quantity for n0 = n1 = n → ∞, i.e.
|cF1(0)− dF1(b)| ≥ ε for an ε > 0 and for any n ≥ N0 but, for the transcendence of e, he gives a
very complicated method. He used a complicated asymptotic and obscure method which was extensively
improved by Hilbert [5] and Huwitz [6] (twenty years later) by using a new algebraic idea. Let us explain
Hurwitz’ idea for the above example. For this, we make n1 = n0 + 1 in the definition of f, and see that
f (j)(b) is a multiple of n1 for every j = 0, 1, ..., N = 2n0 + 1, while f (j)(0) is a multiple of n1 only for
j ∈ {0, 1, ..., N}\{n0}, and f (n0)(0) = bn1 ̸= 0. Now, if we take n1 large enough and such that (cb, n1) = 1
in (2.3), then cF1(0)− dF1(b) ∈ Z \ {0}, whereas debIn0,n1,b(1) → 0, when n1 → ∞.

Using again Hermite Principle, in 1947, I. Niven [9] gave a one page elegant proof for the irrationality
of π. For a reader with a more advanced knowledge in number theory, we recommend the deep, but not
elementary study of the transcendental numbers in the book of A. Baker [2].
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3. π2 and π are irrational numbers

Lemma 3.1. For any fixed n ∈ N∗, we consider the following polynomial function:

(3.1) fn(x) =
xn−1(1− x)n

(n− 1)!
, x ∈ [0, 1].

Then its derivatives at x = 0 and x = 1 are of the following form:

(3.2)


f
(j)
n (1) = Mj · n, Mj ∈ Z, j = 0, 1, ..., 2n− 1,

f
(j)
n (0) = Lj · n, Lj ∈ Z, j = 0, 1, ..., 2n− 1, j ̸= n− 1,

f
(n−1)
n (0) = 1.

Since fn is a polynomial function of degree 2n− 1, f
(j)
n (x) = 0 for all j > 2n− 1 and for all x ∈ [0, 1].

Proof. We have only to carefully use Leibniz formula for computing the derivative of a product of two
functions. □

Now, let us use Hermite Principle (see Section 2) for the following integral (n ∈ N∗, n an odd number):

In =

∫ 1

0

fn(x) sin(πx) dx,

where f is the polynomial function defined in (3.1). We integrate it by parts (2n− 1)-times and find:

(3.3) In =
n−1∑
j=0

(−1)j
1

π2j+1
f (2j)
n (1) +

n−1∑
j=0

(−1)j
1

π2j+1
f (2j)
n (0).

Assume that π2 = a/b, a, b ∈ N∗, (a, b) = 1. So, from (3.3) we get:

(3.4) πan−1In =
n−1∑
j=0

(−1)jan−j−1bjf (2j)
n (1) +

n−1∑
j=0

(−1)jan−j−1bjf (2j)
n (0).

Now we apply Lemma 3.1 and find that all the terms in these two sums are multiple of n, except the
term j = n−1

2 in the second sum (j ∈ N, because n is an odd number).
Thus (3.4) becomes:

(3.5) πan−1In = M · n+ (−1)
n−1
2 a

n−1
2 b

n−1
2 , M ∈ Z.

Since a and b are fixed numbers, we can take n such that n is prime with a and b. Thus, in (3.5), the
right side is not zero modulo n, i.e. it cannot be zero for such numbers n.

Now we evaluate the left side of (3.5). It is clear that

πan−1In ≤ an−1

(n− 1)!
π

for any n = 1, 2, ... Thus πan−1In → 0, when n → ∞, taking values such that n is prime with a and b.
Hence, we obtained a contradiction, namely, the nonzero integer numbers from the right cannot be closer
and closer to zero. So π2 is an irrational number.

In particular, if π were a rational number, then also π2 would be a rational number, a contradiction.
Hence π itself is an irrational number.
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4. eq, q ∈ Q \ {0}, is an irrational number

It is sufficient to prove that ec, where c ∈ N∗, is an irrational number. Indeed, if q = m/n, where
m,n ∈ N∗, (m. n) = 1, and if eq = a/b, a, b ∈ N∗, (a, b) = 1, then em = (a/b)n would be a rational
number, etc.

Thus we assume that q ∈ N∗ and eq = a/b, a, b ∈ N∗, (a, b) = 1. In order to use again the Hermite
Principle we consider the following Riemann integral:

Jn =

∫ 1

0

fn(x)e
qx dx,

where f(x) is the function defined in (3.1). Now, we integrate by parts (2n− 1)-times and get:

Jn = eq
2n−1∑
j=0

(−1)j
1

qj+1
f (j)
n (1)−

2n−1∑
j=0

(−1)j
1

qj+1
f (j)
n (0).

We use again Lemma 3.1, formulas (3.2) and find for eq = a/b:

bq2nJn =

2n−1∑
j=0

(−1)jaq2n−j−1f (j)
n (1)−

2n−1∑
j=0

(−1)jbq2n−j−1f (j)
n (0) =

= M · n+ (−1)n−1bqn.

Let us take now n such that n is prime with bq. So, M · n+ (−1)pbqp is not divisible by n for such n.
So, M · n+ (−1)n−1bqn ̸= 0 for values of n. But,

bq2nJn ≤ b · q2 · (q
2)n−1

(n− 1)!
→ 0,

when n → ∞, so these nonzero integers, M · n + (−1)n−1bqn → 0, when n is large enough, such that n
is prime with bq, a contradiction. Thus, eq is an irrational number for any q ∈ Q \ {0}.

Remark 4.1. In this particular case, it is easy to see that Jn > 0 for any n = 1, 2, ... So, it is not
necessarily to take only those n which are prime with bq.

5. e is a transcendental number

Assume that e is an algebraic number, i.e. it is a root of a polynomial with rational coefficients. This
is equivalent to say that there exist a0, a1, ..., ak in Z, with a0, ak ̸= 0, such that

(5.1) a0 + a1e+ ...+ ake
k = 0.

For any n ∈ N∗, let

(5.2) gn(x) =
xn−1[P (x)]n

(n− 1)!

be a polynomial of degree d = n(k + 1)− 1, where P (x) = (x− 1) · (x− 2) · ... · (x− k). Like in Lemma
3.1, it is not difficult to see that for any m ∈ {1, 2, ..., k} one has:

(5.3)


g
(j)
n (m) = Mj · n, Mj ∈ Z, j = 0, 1, ..., d,

g
(j)
n (0) = Lj · n, Lj ∈ Z, j = 0, 1, ..., d, j ̸= n− 1,

g
(n−1)
n (0) = (−1)kn[k!]n

.

For any m ∈ {1, 2, ..., k} we consider the following Riemann integral:

(5.4) In(m) =

∫ m

0

gn(x)e
−x dx.
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Since gn is a polynomial of degree d, we integrate it by parts d-times and find:

(5.5) In(m) = −e−m
d∑

j=0

g(j)(m) +
d∑

j=0

g(j)(0).

Thus,

(5.6)
k∑

m=1

amemIn(m) = −
k∑

m=1

am

d∑
j=0

g(j)(m) +
d∑

j=0

g(j)(0)
k∑

m=1

amem.

From (5.1) we can write −a0 instead of
∑k

m=1 amem. Thus, from (5.3), (5.6) becomes:

k∑
m=1

amemIn(m) = M · n− a0(−1)kn[k!]n.

Take now n = p, a prime number sufficiently large, say p ≥ p0, such that a0[k!]
n is not divisible by p for

p ≥ p0. Hence, M · p− a0(−1)kp[k!]p ∈ Z \ {0} for any p ≥ p0. But,∣∣∣∣∣
k∑

m=1

amemIp(m)

∣∣∣∣∣ ≤
[

k∑
m=1

|am| em
]
· kp ·

[
sup

x∈[0,k]

|P (x)|p
]
· 1

(p− 1)!
.

Let us denote U =
∑k

m=1 |am| em and V = sup
x∈[0,k]

|P (x)| . So,∣∣∣∣∣
k∑

m=1

amemIp(m)

∣∣∣∣∣ ≤ U · V · k · (V · k)p−1

(p− 1)!
→ 0,

when p → ∞. Thus, we get a contradiction. Hence e cannot be an algebraic number, i.e. it is a
transcendental number.

6. Some elementary facts from algebraic number theory

There are some good books on algebraic number theory. Unfortunately, it is difficult for a reader with
few basic knowledge in undergraduate mathematics to study them. This is why we give here only some
prerequisites on algebraic numbers, which we extensively use in Sections 7 and 8.

Let Q be the rational number field, contained in any other subfield K of C, the field of all complex
numbers, which is algebraically closed, i.e. any polynomial P ∈ C[x] has all its roots in C ([7], Example
5, Ch. VI. See also the elegant and elementary proof of Fefferman [3]). A complex number α ∈ C is said
to be an algebraic number (over Q) if there exist a0, a1, ..., an−1 in Q such that

(6.1) a0 + a1α+ ...+ an−1α
n−1 + αn = 0, n ∈ N∗,

This means that α is a root of a monic polynomial P (x) of degree n ≥ 1, i.e. P (α) = 0, where

(6.2) P (x) = a0 + a1x+ ...+ an−1x
n−1 + xn ∈ Q[x].

Let us denote Q the subset of all algebraic numbers of C. It is clear that Q ⊂ Q. If in (6.1) a0, a1, ..., an−1 ∈
Z, we say that α is an algebraic integer (over Q). Let A be the subset of all algebraic integers of C. So,
Z ⊂ A ⊂ Q. If α is an algebraic number, we denote Q[α] the least subring of C which contains Q and α,
i.e. the set of all polynomials in α,

f(α) = b0 + b1α+ ...+ bkα
k,

where b0, b1, ..., bk ∈ Q. Let α be an algebraic number and let fα ∈ Q[x] be a monic polynomial of the
least degree such that fα(α) = 0. Since fα is unique, it is called the minimal polynomial of α (over Q).
The degree of fα is called the degree of α and we denote it by degα. It is easy to see that fα is irreducible
over Q. If deg fα = degα = n, the other roots α2, α3, ..., αn ∈ C (in fact in Q) are called the conjugates
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of α. The set {α1 = α, α2, ..., αn} is called the orbit of α. Sometimes we say that α1 = α, α2, ..., αn are
the conjugates of α.

Let P be the monic polynomial from (6.2) (not necessarily the minimal polynomial of α) and let
α1, α2, ..., αn be its roots in Q. Let x1, x2, ..., xn be n independent variables and let

(6.3)

s1(x1, x2, ..., xn) =
∑

1≤i≤n xi

s2(x1, x2, ..., xn) =
∑

1≤i<j≤n xixj

...
sn(x1, x2, ..., xn) = x1x2...xn

,

be the corresponding fundamental symmetric polynomials in variables x1, x2, ..., xn. In general, a polyno-
mial f(x1, x2, ..., xn) ∈ Q[x1, x2, ..., xn] is said to be a symmetric polynomial if

f(xσ(1), xσ(2), ..., xσ(n)) = f(x1, x2, ..., xn),

for any permutation σ ∈
∑

n, the group of all permutations of the set {1, 2, ..., n}. It is clear that the
polynomials s1, s2, ..., sn from (6.3) are symmetric polynomials. From Viète’s formulas one has:

(6.4)

s1(α1, α2, ..., αn) = −an−1

s2(α1, α2, ..., αn) = an−2

...
sn(α1, α2, ..., αn) = (−1)na0

,

where α1, α2, ..., αn are the roots of the polynomial P from (6.2). It is clear enough that if α = α1 is an
algebraic integer, then sj(α1, α2, ..., αn) ∈ Z for any j = 1, 2, ..., n.

Theorem 6.1. With the above notation and definitions, let P be a monic polynomial with integer co-
efficients and let α1, α2, ..., αn be all the roots of P (in A). Let f(x1, x2, ..., xn) be a nonzero symmetric
polynomial in the variables x1, x2, ..., xn, with coefficients in Z. Then f(α1, α2, ..., αn) is an integer, i.e.
it is in Z.

Proof. First of all we prove that f(x1, x2, ..., xn) = g(s1, s2, ..., sn), where g has integer coefficients and
deg g ≤ d = deg f, and s1, s2, ..., sn are the fundamental symmetric polynomials from (6.3) (see also [7],
4.6 for a proof in a more condensed form). If we do this, the statement of the theorem comes from (6.4).

Since for n = 1 the statement is obvious, we consider n ≥ 2. We proceed by mathematical induction
on n. Assume we proved the statement for k = 1, 2, ..., n − 1 variables. Let us prove it for n variables
[statement 1]. For this statement 1 we use mathematical induction on d, the degree of f (the greatest
degree of its monomials). If the degree d of f is zero, we have nothing to prove. Assume that d ≥ 1 and
suppose that we have proved the statement 1 for any degree 0, 1, ..., d − 1 and let us prove statement 1
for f with degree d.

If f(x1, x2, ..., xn−1, 0) = 0, then f is divisible by xn and we continue the reasoning from (6.5) bellow,
with F (x1, x2, ..., xn) = f(x1, x2, ..., xn−1, 0). So, we may assume that f(x1, x2, ..., xn−1, 0) is not identical
to zero.

Since f(x1, x2, ..., xn−1, 0) is a nonzero (n ≥ 2) symmetric polynomial in n− 1 variables, our induction
hypothesis says that

f(x1, x2, ..., xn−1, 0) = g1(s
′
1, s

′
2, ..., s

′
n−1),

where g1 is a polynomial of degree ≤ d = deg f in n − 1 variables with integer coefficients, and
s′1, s

′
2, ..., s

′
n−1 are the fundamental symmetric polynomials in these n−1 variables. In fact, s′j(x1, x2, ..., xn−1) =

sj(x1, x2, ..., xn−1, 0) for any j = 1, 2, ..., n− 1.
Now, let us consider a new polynomial:

h(x1, x2, ..., xn) = g1(s1, s2, ..., sn−1) ∈ Z[x1, x2, ..., xn].

It is clear that h is a symmetric polynomial of degree ≤ d in n variables. Thus,

F (x1, x2, ..., xn) = f(x1, x2, ..., xn)− h(x1, x2, ..., xn)

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

34



is a symmetric polynomial with integer coefficients and F (x1, x2, ..., xn−1, 0) = 0. Thus, F is divisible by
xn. Since F is symmetric, it is also divisible by sn = x1x2...xn. So,

(6.5) F (x1, x2, ..., xn) = snG(x1, x2, ..., xn),

where G is a polynomial in n variables with integer coefficients and degG ≤ d − n < d − 1. Now, the
mathematical induction hypothesis on d says that

G(x1, x2, ..., xn) = H(s1, s2, ..., sn)

with degH ≤ degG ≤ d− n. Thus

f(x1, x2, ..., xn) = snH(s1, s2, ..., sn) + g1(s1, s2, ..., sn−1),

where the degree of the polynomial on the right side is ≤ d. Thus, denoting

g(s1, s2, ..., sn) = snH(s1, s2, ..., sn) + g1(s1, s2, ..., sn−1),

we see that f(x1, x2, ..., xn) = g(s1, s2, ..., sn), where deg g ≤ d = deg f, i.e. the statement 1 for n variables
is proved, and so, the induction on n is finished. Hence Theorem 6.1 is completely proved. □

At the beginning of this section we gave some definitions relative to the basic field Q of rational
numbers. For our further purposes we need to start with an arbitrary subfield K of C, the complex
number field. It is clear that Q ⊂ K ⊂ C. We say that α ∈ C is an algebraic number over K if there
exists a monic polynomial f ∈ K[x] such that f(α) = 0. Denote fα,K such a monic polynomial of the least
possible degree. By applying the Euclid division algorithm, we see that fα,K is unique with these last
properties: fα,K ∈ K[x], fα,K is monic, fα,K(α) = 0 and fα,K has the least degree with these previous
three properties. This is why fα,K is called the minimal polynomial of α over K. We also say that the
degree degK α of α over K is equal to deg fα,K . It is easy to see that fα,K is irreducible over K, i.e. in
K[x]. Now, α is a simple root of fα,K , otherwise f ′

α,K(α) = 0 and deg f ′
α,K < deg fα,K . Moreover, any

other root β of fα,K has also fα,K as its minimal polynomial, i.e. fβ,K = fα,K . Indeed, since fα,K(β) = 0,
using the Euclidean division algorithm in K[x], one can see that fβ,K is a factor of fα,K in K[x]. Since
fα,K is irreducible and monic, we see that fβ,K = fα,K . Thus fα,K is the minimal polynomial for all the
conjugates of α, i.e. for all the roots of it.

Lemma 6.2. Let α be an algebraic number over K, a subfield of C, and let fα,K be its minimal polynomial
over K. Then fα,K has only simple roots.

Proof. Let β be a root of fα,K . Since fα,K = fβ,K , if β was a multiple root of fβ,K , then f ′
β,K(β) = 0,

which is not possible, because deg f ′
β,K < deg fβ,K . □

Lemma 6.3. Let K be a subfield of C and let α be an algebraic number over K. Then K[α], the least
subring of C which contains K and α, is a subfield of C, which is a finite vector space over K and
dimK K[α] = K[α] : K = deg fα,K . Thus K[α] = K(α), the least subfield of C which contains K and α.
Conversely, if γ ∈ C such that Q[γ] : Q < ∞, then γ is an algebraic number over Q.

Proof. Let
fα,K(x) = xn + a1x

n−1 + ...+ an ∈ K[x]

be the minimal polynomial of α. Thus, an ̸= 0 and

αn = −a1α
n−1 − ...− an.

So,
αn+1 = −a1α

n − ...− anα =

= a1[a1α
n−1 + ...+ an]− a2α

n−1 − ...− anα =

= b1α
n−1 + b2α

n−2 + ...+ bn ∈ K[α].

Continuing in this way, we get:

αn+2 = α
[
b1α

n−1 + b2α
n−2 + ...+ bn

]
=
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= b1[−a1α
n−1 − ...− an] + b2α

n−1 + ...+ bnα =

= c1α
n−1 + c2α

n−2 + ...+ cn ∈ K[α].

Thus, for any k ∈ N∗, one obtains

αn+k =
n−1∑
j=0

djα
j ∈ K[α].

Hence, {1, α, ..., αn−1} is a generating system for K[α]. Now, if

t∑
j=0

ejα
j = 0, ej ∈ K, et ̸= 0, j = 0, 1, ..., t, t ≤ n− 1,

then α is a root of the monic polynomial g(x) =
∑n−1

j=0 e∗jx
j ∈ K[x], where e∗j = ej/et, j = 0, 1, ..., t.

Since fα,K is the minimal polynomial of α and since deg g < deg fα,K , we obtain a contradiction. Hence
{1, α, ..., αn−1} is also a linear independent set over K. This means that {1, α, ..., αn−1} is a basis of the
vector space K[α] over K, so K[α] : K = n = deg fα,K .

Take now β ∈ K[α], β ̸= 0. Since {1, β, β2, ...} cannot be linear independent over K (dimK K[α]) = n),
we see that there exists a liner combination

λ0 + λ1β + ...+ λtβ
t = 0, λj ∈ K, j = 0, 1, ..., t,

such that λ0, λt ̸= 0. We know that β−1 ∈ C and, multiplying this last equality by β−1, we get:

β−1 = − 1

λ0

(
λ1 + λ2β + ...+ λtβ

t−1
)
∈ K[α].

So, K[α] is a subfield of C, i.e. the least subfield of C, generated by K and α.
For the last statement, we have to remark that the sequence {1, γ, ..., γn, ...} cannot be linear indepen-

dent over Q. So, there exists a nontrivial linear combination

N−1∑
j=0

ljγ
j + γN = 0, lj ∈ Q,

etc. □

Corollary 6.4. Let α, β be algebraic numbers over Q. Then β is an algebraic number over K = Q[α]
and so, Q[α][β] = Q[α, β] is a subfield of C, and

(6.6) Q[α, β] : Q = (Q[α] : Q) · (Q[α, β] : Q[α]) =

= (Q[β] : Q) · (Q[α, β] : Q[β]) < ∞.

Hence, the set Q of all the algebraic numbers (over Q) is a subfield of C.

Proof. Since fβ,Q ∈ Q[x] ⊂ Q[α][x] and fβ,Q(β) = 0, we see that fβ,Q[α] is a divisor of fβ,Q in Q[α][x].
So, β is an algebraic number over K = Q[α] and Lemma 6.3 says that K[β] is a field, and Q[α][β] : Q
< ∞. Thus Q[α, β] : Q < ∞ and so, the sets {1, α ± β, ..., (α ± β)m, ...} and {1, αβ, ..., (αβ)m, ...} are
linear dependent over Q. This means that there exist N and M natural nonzero numbers and aj ∈ Q,
j = 0, 1, ..., N − 1such that

N−1∑
j=0

aj(α± β)j + (α± β)N = 0,

and bj ∈ Q, j = 0, 1, ...,M − 1 such that

M−1∑
j=0

bj(αβ)
j + (αβ)M = 0.
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It is clear that α± β is a root of the monic polynomial

P (x) =
N−1∑
j=0

ajx
j + xN ∈ Q[x],

and αβ is a root of the polynomial

Q(x) =
M−1∑
j=0

bjx
j + xM = 0 ∈ Q[x].

Hence α ± β and αβ are also algebraic numbers (over Q). Q is a field, because an algebraic number
γ ̸= 0 has a reciprocal γ−1 even in Q[γ] ⊂ Q (Lemma 6.3). It remains to prove formula (6.6). Let
{1, α, ..., αn−1} be a basis of the vector space Q[α] over Q. Here n = degQ α and let {1, β, ..., βm−1}
be a basis of the vector space Q[α, β] over Q[α]. Here m = degQ[α] β. It is easy to prove that {αiβj},
i = 0, 1, ..., n− 1, j = 0, 1, 2, ...,m− 1 is a basis of the vector space Q[α, β] over Q. So, one obtains that
Q[α, β] : Q = nm, i.e. formula (6.6) □

Remark 6.5. Q : Q = ∞, because we can find algebraic numbers over Q of any degree. For instance,
let n be a positive integer and fn(x) = xn + 2. It is easy to see that this last polynomial is irreducible, so
any root αn of it has degree n over Q, i.e. fαn,Q = fn.

Definition 6.6. Let K ⊂ L ⊂ C be two subfields of C and let σ : L → C be a field morphism of L into
C, i.e. σ(α ± β) = σ(α) ± σ(β), σ(αβ) = σ(α)σ(β) and σ(1) = 1 for any α, β ∈ L. We say that σ is a
K-embedding of L into C if σ(γ) = γ for any γ ∈ K.

Remark 6.7. Any field morphism σ : L → C, where L is a subfield of C, is a one-to-one mapping.
Indeed, σ(α) = σ(β), or σ(α − β) = 0 implies α = β, otherwise δ = α − β ̸= 0, so there exist δ−1 in L.
Hence, 1 = σ(1) = σ(δδ−1) = σ(δ)σ(δ−1) = 0, a contradiction Thus, α = β.

Lemma 6.8. Let α be an algebraic number over a subfield K of C. Then there exist exactly n =
degK α = deg fα,K K-embeddings σ1, σ2, ..., σn of K[α] into C, where σj(α) = αj , j = 1, 2, ..., n, with
α1 = α, α2, ..., αn the roots of fα,K , the minimal polynomial of α over K.

Proof. Let

fα,K(x) = a0 + a1x+ ...+ an−1x
n−1 + xn ∈ K[x]

be the minimal polynomial of α over K, and let σ be a K-embedding of K into C. Then

0 = σ(a0 + a1α+ ...+ an−1α
n−1 + αn) =

= a0 + a1σ(α) + ...+ an−1σ(α)
n−1 + σ(α)n.

Thus σ(α) is a root of fα,K . Since fα,K has simple roots, σ(α) = αj , one of the conjugate of α. Hence,
there exist exactly n distinct K-embeddings of K[α] into C. □

Lemma 6.9. Let K ⊂ L be two subfields in C and σ0 : L → C be a fixed K-embedding of L into C. Let
α be a fixed algebraic number over L with n = degL α. Then there exist exactly n K-embeddings µ of L[α]
into C such that µ(λ) = σ0(λ) for any λ ∈ L. We say that µ extends σ0 to L[α].

Proof. Let

b = a0 + a1α+ ...+ an−1α
n−1, a0, a1, ..., an−1 ∈ L

be an arbitrary element in L[α] (Lemma 6.3) and let µ be a K-embedding of L[α] into C such that the
restriction of it to L is σ0. Thus,

µ(b) = σ0(a0) + σ0(a1)µ(α) + ...+ σ0(an−1)µ(α)
n−1.

From Lemma 6.8 we know that µ(α) = αj , where αj is one of the roots of the minimal polynomial of α
over L. Since n = deg fα,L, we see that one has exactly n distinct extensions of σ0 to L[α]. □
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Corollary 6.10. Let α, β be two algebraic numbers over Q. Then the number of the Q-embeddings of
Q[α, β] into C is equal to Q[α, β] : Q.

Proof. For each Q-embedding σi : Q[α] → C, i = 1, 2, ..., n = degQ α (Lemma 6.8) one has Q[α, β] :
Q[α] = m, Q-embeddings µij , j = 1, 2, ...,m which extends σi to Q[α, β], i.e. such that µij(λ) = σi(λ)
for any λ ∈ Q[α] (Lemma 6.9). It remains to prove that Q[α, β] : Q = (Q[α, β] : Q[α]) · (Q[α] : Q). But
this is exactly formula (6.6) which was proved in corollary 6.4. □

Remark 6.11. One can easily generalize Corollary 6.10. Let K ⊂ L be two subfields in C such
that L : K = m < ∞. Let γ1, γ2, ..., γn, ... numbers in L such that γ1 /∈ K, γ2 /∈ K[γ1], ..., γn /∈
K[γ1, γ2, ..., γn−1], ... Since K[γj+1] : K[γj ] > 1 and L : K = m, the previous construction can have
only a finite number of steps, i.e. one gets:

(6.7) K ⊂ K[γ1] ⊂ K[γ1, γ2] ⊂ ... ⊂ K[γ1, γ2, ..., γk] = L.

As in the proof of Corollary 6.4 we can prove that

m = L : K = (K[γ1] : K) · (K[γ1, γ2] : K[γ1]) · ... · (L : K[γ1, γ2, ..., γk−1]).

We apply now Lemma 6.9 to each inclusion in (6.7) and find that the number of K-embeddings of L into
C is exactly m = L : K.

Definition 6.12. Let α ∈ Q be an algebraic number (over Q) and let fα,Q ∈ Q[x] be its minimal
polynomial (over Q). The set O(α) of all conjugates of α (over Q), i.e. the set of all the roots of fα,Q is
said to be the orbit of α.

It is clear that if α1 = α, α2, ..., αn (n = deg fα,Q) are all the roots of fα,Q, then O(αj) = O(α) for
any j = 2, 3, ..., n, because fαj ,Q = fα,Q for j = 2, 3, ..., n. Moreover, if σ : K → C is a Q-embedding of a
subfield K of C, which contains Q[α], then σ(O(α)) = O(α).

Definition 6.13. Let M be a finite set of algebraic numbers (over Q). We say that M is closed to
Q-embeddings if for any Q-embedding σ : Q → C of the subfield Q of C, one has σ(M) ⊂ M (in fact
σ(M) = M, because σ is a one-to-one mapping-see Remark 6.7).

Example 6.14. An orbit O(α) over Q is closed to Q-embeddings.

Proposition 6.15. Any finite subset M of Q, which is closed to Q-embeddings is a finite (disjoint) union
of orbits over Q.

Proof. Let m = |M | the number of elements of M. We proceed by induction on m. For m = 1, we see
that M = {q}, q ∈ Q, so M = O(q). Assume that our statement is true for k = 1, 2, ...,m− 1 and let us
prove it for k = m. Let β1 be in M. Since M is closed to Q-embeddings, O(β1) ⊂ M. Since |O(β1)| ≥ 1
and since M \ O(β1) is also closed to Q-embeddings, we apply the induction hypothesis and find that

M \ O(β1) =
N
∪

j=2
O(βj),

where the last union is a disjoint one. So,

M =
N
∪

j=1
O(βj).

□

Let α1 = α, α2, ..., αn (n = deg fα,Q) be the orbit of an algebraic number α over Q. Since any
Q-embedding σ : Q[α1, α2, ..., αn] → C give rise to a permutation of α1, α2, ..., αn, we see that K =
σ (Q[α1, α2, ..., αn]) ⊂ Q[α1, α2, ..., αn]. Moreover, σ is a one-to-one mapping, so

K : Q = Q[α1, α2, ..., αn] : Q,

i.e. K = Q[α1, α2, ..., αn]. Thus, any Q-embedding σ of K is a one-to-one and onto field morphism on K,
so the set of all such morphisms is a group under the composition law of functions. We call this group the
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Galois group of K and denote it Gal(K/Q), or simple G(K) or G. If instead of Q we take an arbitrary
subfield L of K = Q[α1, α2, ..., αn], we also get the Galois group Gal(K/L) of all L-embeddings of K onto
K. From Remark 6.11 we see that the number |Gal(K/L)| , the number of the elements of Gal(K/L),
the order of Gal(K/L), is equal to K : L, i.e. with the degree of the extension L ⊂ K.

Since in Section 8 we use the Galois groups G = Gal(K/L) of order a power of p = 2, we recall a basic
result from finite group theory. We say that a subgroup H of G is a normal subgroup of G if x−1Hx = H
for any x ∈ G. In this last case, the equivalence relation: x ∼ y if and only if x−1y ∈ H, give rise to a
group structure on the set of equivalence classes G/ ∼ . This last group of classes is denoted G/H. If G
is a finite group of order |G| (the number of its elements) then, by counting the number of classes (each
class has the same number of elements), we obtain Lagrange’s formula

|G| = |H| · |G/H| .

Lemma 6.16. (Corollary 6.6, [7]) Let G be a finite group of order |G| = pn, where p is a prime number
and n > 0. Then there exists a tower of normal subgroups {Gi}, i = 0, 1, ..., n,

{1} = G0 ⊂ G1 ⊂ ... ⊂ Gn = G,

such that |Gi/Gi−1| = p for all i = 1, 2, ..., n.

Let us assume now that G = Gal(K/L), where K = Q[α1, α2, ..., αn], L is a subfield of K, L ̸= K,
{α = α1, α2, ..., αn} = O(α) and |G| = 2n.

Corollary 6.17. With the above notation and hypotheses, there exists a tower of subfields

L = K0 ⊂ K1 ⊂ ... ⊂ Kn = K,

such that Ki : Ki−1 = 2 for any i = 1, 2, .., n. Thus, there exist β1, β2, ..., βn ∈ K such that Ki = Ki−1[βi]
for i = 1, 2, ..., n. In particular, K = L[β1, β2, ..., βn].

Proof. It is sufficient to take Ki = {x ∈ K : σ(x) = x, σ ∈ Gn−i}, where {Gi}, i = 0, 1, ..., n, is the
tower of groups from Lemma 6.16 and G = Gal(K/L). Since the number of Ki−1-embeddings of Ki

into C is equal to |Gi/Gi−1| = 2, we see that Ki : Ki−1 = 2 for any i = 1, 2, .., n. Thus, if we take any
βi ∈ Ki \Ki−1, we see that Ki = Ki−1[βi] for i = 1, 2, ..., n. □

Definition 6.18. Let K be a subfield of C such that K : Q = n (always Q ⊂ K) and let σ1, σ2, ..., σn the
distinct Q-embeddings of K into C (see Remark 6.11). For any α ∈ K (so α is an algebraic number over
Q, because Q[α] : Q ≤ n, Lemma 6.3) we define the following rational number (it is equal to a power of
(−1)mfα,Q(0)), where m = deg fα,Q-see Lemma 6.20 bellow) :

NK(α) = σ1(α) · σ2(α) · ... · σn(α),

and we call it the K-norm of α over Q. If K = Q[α], we simply denote NQ[α](α) by N(α), and call it the
norm of α (over Q).

Lemma 6.19. Let α ∈ Q be an algebraic number (over Q) and fα,Q ∈ Q[x] be its minimal polynomial.
Then N(α) = (−1)nfα,Q(0), where n = degQ fα,Q.

Proof. Let σ1, σ2, ..., σn the distinct Q-embeddings of Q[α] into C.
Since σ1(α), σ2(α), ..., σn(α) are all the conjugates of α, the last Viète formula says that

N(α) = σ1(α) · σ2(α) · ... · σn(α) = (−1)nfα,Q(0).

□

Lemma 6.20. Let K be a subfield of C such that K : Q = n, and let α be in K such that α1 = α, α2, ..., αm

are all its conjugates. Then

(6.8) NK(α) = (α1α2...αm)K:Q[α] = [(−1)mfα,Q(0)]
K:Q[α] ∈ Q.
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Proof. The last equality comes from Lemma 6.19. To prove the first equality, we have to see that any
Q-embedding σi : Q[α] → C is completely defined by σi(α) = αi, i = 1, 2, ..., n (Lemma 6.8) and it can be
extended to l = K : Q[α] distinct Q-embeddings µij , j = 1, 2, ..., l of K into C (Lemma 6.9 and Remark
6.11). □

Lemma 6.21. With the above notation, definitions and hypotheses, the mapping NK : K → Q is a
multiplicative mapping, i.e.

NK(αβ) = NK(α) ·NK(β)

for any α, β ∈ K.

Proof. We use only the multiplicative property of a field morphism. Indeed, let σ1, σ2, ..., σn be all the
distinct Q-embeddings of K into C. Thus,

NK(αβ) = σ1(αβ) · σ2(αβ) · ... · σn(αβ) =

= [σ1(α) · ... · σn(α)] · [σ1(β) · ... · σn(β)] = NK(α) ·NK(β).

□

Corollary 6.22. Let q be in Q and let α be an algebraic number (over Q) with n = degQ α. Then

(6.9) N(qα) = qnN(α).

Proof. Let σ1, σ2, ..., σn be the Q-embedding of Q[α] into C. So,

N(qα)
def
= NQ[α](qα) = σ1(qα) · σ2(qα) · ... · σn(qα) =

= qσ1(α) · qσ1(α) · ... · qσn(α) = qnN(α).

□

Definition 6.23. Let α ∈ C be a complex number. If α is a root of a monic polynomial P ∈ Z[x], we
say that α is an algebraic integer.

Lemma 6.24. Let α ∈ Q be an algebraic integer. Then α ∈ Z.

Proof. Assume that α = a/b, a, b ∈ Z∗, b > 0 and (a, b) = 1, i.e. there is no prime number which divide
both a and b. Let

P (x) = c0 + c1x+ ...+ cn−1x
n−1 + xn ∈ Z[x],

be such that P (α) = 0. Thus

c0b
n + c1b

n−1a+ ...+ cn−1ba
n−1 + an = 0,

and so, if b ̸= 1, take a prime number p which divide b and see from this last equality that p also divide
a, a contradiction. Hence b = 1, i.e. α ∈ Z. □

Lemma 6.25. For any algebraic number α (over Q) there is a positive integer d > 0, such that dα is an
algebraic integer. Moreover, degQ(dα) = degQ α and fdα,Q ∈ Z[x].

Proof. Let

fα,Q(x) = c0 + c1x+ ...+ cn−1x
n−1 + xn ∈ Q[x]

be the monic minimal polynomial of α, and let cj = aj/bj , (aj , bj) = 1, and bj > 0 for any j = 0, 1, ..., n−1.
Thus,

(6.10)
a0
b0

+
a1
b1

α+ ...+
an−1

bn−1
αn−1 + αn = 0.

Let us multiply the equality (6.10) by dn, where d is the LCM of b0, b1, ..., bn−1, and find:

dna0
b0

+
dn−1a1

b1
(dα) + ...+

dan−1

bn−1
(dα)n−1 + (dα)n = 0.
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Since

e0 =
dna0
b0

, e1 =
dn−1a1

b1
, ..., en−1 =

dan−1

bn−1
∈ Z,

we see that dα is a root of the polynomial

g(x) = e0 + e1x+ ...+ en−1x
n−1 + xn ∈ Z,

so dα is an algebraic integer. Moreover, since Q[α] = Q[dα] (both being fields and d ∈ Z ⊂ Q),
degQ α = Q[α] : Q = Q[dα] : Q = degQ(dα), so fdα,Q = g ∈ Z[x]. □

Lemma 6.26. Let α, β be two algebraic integers (over Q) in C. Then α ± β and αβ are also algebraic
integers (over Q). In particular, A is a subring of Q.

Proof. Let

hα(x) = a0 + a1x+ ...+ an−1x
n−1 + xn ∈ Z[x],

hβ(x) = b0 + b1x+ ...+ bm−1x
m−1 + xm ∈ Z[x]

be two polynomials with integer coefficients, such that hα(α) = 0 and hβ(β) = 0. So, any element s of
Z[α, β] = Z[α][β] can be written as

s =
n−1∑
i=0

m−1∑
j=0

cijα
iβj , cij ∈ Z.

Let us denote ω1, ω2, ..., ωk, k = nm, the set of generators {αiβj} of Z[α, β], where i = 0, 1, ..., n − 1,
j = 0, 1, ...,m − 1, and let us take an arbitrary element γ of Z[α, β]. Thus, for any i = 1, 2, ..., k on can
write:

(6.11) γωi =
k∑

j=1

aijωj , aij ∈ Z, i, j ∈ {1, 2, ..., k}.

Denote A = (aij) the k × k matrix with the integer entries aij , i, j = 1, 2, ..., k. So (6.11) can also be
written:

B


ω1

ω2

...
ωk

 =


0
0
...
0

 ,

where B = γ · I − A, with I the k × k identity matrix. Since ω1, ω2, ..., ωk is a nontrivial solution
of the above homogenous system, we see that detB = 0. Thus γ is a root of the monic polynomial
P (x) = det(xI −A) with coefficients in Z. Hence γ is also an algebraic integer (over Q). For γ = α± β,
αβ we obtain the statement of the lemma. □

Remark 6.27. Let α be an algebraic integer and g ∈ Z[x] be a monic polynomial of the least degree such
that g(α) = 0. Then fα,Q = g, so fα,Q ∈ Z[x]. Indeed, since g ∈ Z[x] ⊂ Q[x] and g(α) = 0, we see that fα,Q
is a divisor of g in Q[x]. Since all the conjugates of α are roots of g, i.e, since σ(g(α)) = g(σ(α)) for any
Q-embedding of Q[α], all these roots are algebraic integers. From Viète formulas and from the Lemmas
6.24, 6.26, we see that the coefficients of fα,Q are integers, i.e. fα,Q = g (because of the minimally of g).
Therefore, α is an algebraic integer if and only if fα,Q has integer coefficients. However, practically, it is
not a good idea to use this last characterization of an algebraic integer as a definition.

Definition 6.28. We say that an algebraic integer α is divisible by a nonzero integer n if there exists
another algebraic integer β such that α = nβ in A.

Lemma 6.29. Let α be a nonzero algebraic integer. Then there exist only a finite number of prime
numbers p which divide α.
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Proof. Assume that α = pβ, where p is a prime number and β is another algebraic integer. Let K =
Q[α, β], the least subfield of C which contains Q, α and β. Thus,

NK(α) = pK:QNK(β),

(see Lemmas 6.20, 6.21). Since NK(α) and NK(α) are integers, we see that p is a divisor of the fixed
number NK(α), so such a p takes a finite number of values. □

7. A simple proof for the basic Lindemann’s theorem

Remark 7.1. Here are some easy remarks for a reader who has no background in complex function
theory. Let α = a+ ib, a, b ∈ R, i =

√
−1, be a complex number. Then, by eα we understand the following

complex number:
eα = ea cos b+ iea sin b.

Using elementary trigonometry, it is easy to prove that

eα+β = eα · eβ , and ekα = (eα)
k
,

where α, β ∈ C and k ∈ N. So, later in this section, we can freely use equalities of the form:

(eα1)
k1 · (eα2)

k2 · ... · (eαn)
kn = eα1k1+α2k2+...+αnkn

for α1, ..., αn ∈ C and k1, ..., kn ∈ N.

The next result is the famous Lindemann’s Theorem [8]. In the proof of Theorem 7.2 we mix the main
Lindemann idea with some ideas from the proof of a more general result, known as Weierstrass-Lindemann
Theorem [2].

Theorem 7.2. Let α be a nonzero algebraic number, i.e. a nonzero root of a polynomial with rational
coefficients. Then eα is a transcendental number. In particular, since eπi = −1, π cannot be an algebraic
number, i.e. π is a transcendental number.

Proof. Lemma 6.25 says that there exists a positive integer d > 0 such that d ·α is an algebraic integer. If
eα was an algebraic number, then (eα)d would be also an algebraic number (Q is a field-see Corollary 6.4).
Thus, it is sufficient to prove the statement for α an algebraic integer. We also can assume that α /∈ Z.
Indeed, if α is a positive integer, we proved the statement in Section 5. If α is a negative integer, then

eα = (e−α)
−1

cannot be an algebraic number because e−α is not an algebraic number (see Section 5).
Since α is a nonzero algebraic integer, α /∈ Z, its monic minimal polynomial Pα,Q has integer coefficients
(Remark 6.27). Thus,

(7.1) Pα,Q(x) = xn + an−1x
n−1 + ...+ a0 ∈ Z[x],

a0 ̸= 0, Pα,Q(α) = 0 and degQ(α) ≥ 2 (because α is not in Q).
Let α1 = α, α2, ..., αn be all the roots of Pα,Q, i.e. all the conjugates of α over Q. Since Pα,Q is the

minimal polynomial of α, all these roots are distinct (Lemma 6.2) and they are also algebraic integers
(Remark 6.27).

Now, let us assume that eα is an algebraic number, i.e. its minimal monic polynomial feα,Q over Q
has rational coefficients, say:

feα,Q(x) = xm +
bm−1

bm
xm−1 + ...+

b0
bm

,

where bj ∈ Z for j = 0, 1, ...,m, m ≥ 1 and bm > 0, b0 ̸= 0. So, if one denotes

Q(x) = bmxm + bm−1x
m−1 + ...+ b0 ∈ Z[x],

we see that

(7.2) Q1 = Q (eα1) =
m∑
i=0

bie
iα1 = 0,
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where α1 = α.
In general, for any j = 1, 2, ..., n, we denote

(7.3) Qj = Q (eαj ) =
m∑
i=0

bie
iαj .

Thus,

(7.4) R = Q1 ·Q2 · ... ·Qn = 0.

Let us denote

S = {s = (k1, k2, ..., kn) ∈ Nn : 0 ≤ kj ≤ m, j = 1, 2, ..., n}.
Thus (7.4) can also be written:

(7.5) R =
∑

s=(k1,k2,...,kn)∈S

bk1
bk2

...bkn
eα(s) = 0,

where α(s) = k1α1 + k2α2 + ...+ knαn.
Let us choose only the distinct such α(s) and let us denote them by β1, β2, ..., βt. For such an algebraic

integer α(s) = βj we denote b∗j the sum of all bk1
bk2

...bkn
which appear as coefficients in front of a eα(s),

which is equal to eβj . If b∗j = 0, we do not count the term b∗je
βj in the sum (7.5) and change the order of

β1, β2, ..., βt such that all b∗je
βj are not zero and β1, β2, ..., βt are distinct (maybe with another value of

t). So, the sum (7.5) can also be written:

(7.6) R =

t∑
j=1

b∗je
βj = 0,

where b∗j ∈ Z∗ (see the explanation bellow why we can take only those nonzero b∗j ), j = 1, 2, ..., t and
β1, β2, ..., βt are distinct algebraic integers.

This sum is not ”empty”, i.e. not all b∗j = 0, j = 1, 2, ..., t. Indeed, let us consider on C the lexicographic

order ” ≺ ” : a+ ib ≺ c+ id, i =
√
−1, a, b, c, d ∈ R, if a < c, or if a = c and b < d. For any l = 1, 2, ..., n,

let us choose the greatest element ktlαl relative to ” ≺ ” in the set Tl = {kαl : k = 0, 1, ...,m, bk ̸= 0}
(see (7.2) and (7.3)). It is easy to see that ktl = 1, or m and it is unique in Tl with this property. Now,
the algebraic integer

v =
n∑

l=1

ktlαl

is one of the {βj}j=1,2,...,t in (7.6), say βj0 . Since b0 ̸= 0 and bm ̸= 0, we see that b∗j0 = bkt1
...bktn

̸= 0.
Therefore, we can assume that all the integers b∗j are not zero for any j = 1, 2, ..., t.

Relative to the sum in (7.6) we can make the following important remark. Let τ : Q[β1, β2, ..., βt] → C
be a Q-embedding. So,

τ(α(s)) = k1τ(α1) + k2τ(α2) + ...+ knτ(αn).

Since

τ(α(s)) = σ(k1)α1 + σ(k2)α2 + ...+ σ(kn)αn,

where {σ(k1), σ(k2), ..., σ(k2)} is a permutation σ of the set {k1, k2, ..., kn} and
{τ(α1), τ(α2), ..., τ(αn)} is a permutation of {α1, α2, ..., αn}), the sum of all products bkj1

bkj2
...bkjn

which appear in front of a eτ(α(s)) is the same like the corresponding sum of eα(s). Hence, if α(s) = βj

and τ(α(s)) = βl, then b∗j = b∗l , where b
∗
l is the coefficient which appears in front of eβl . Thus, b∗l ̸= 0, i.e.

the sum in (7.6) is ”invariable” to any Q-embedding τ of Q[β1, β2, ..., βt]. Thus, all the elements of any
orbit O(βj), j = 1, 2, ..., t are also in the set {β1, β2, ..., βt}, i.e. this last set is a disjoint union of orbits
O(βjq ), q = 1, 2, ..., h, for a subset {βj1 , βj2 , ..., βjh} of {β1, β2, ..., βt}.
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Now, we come back to Hermite Principle and consider the polynomial

H(x) =
t∏

j=1

(x− βj) ∈ A[x],

where A is the ring of all algebraic integers in C. Let us denote W = {β1, β2, ..., βt}, let us fix an arbitrary
prime number p, and let us fix a γ ∈ W. With this notation, let us consider the following polynomial:

fp,γ(x) =
1

(p− 1)!

[H(x)]p

x− γ
∈ 1

(p− 1)!
A[x]⊂ Q[x],

where Q is the field of all algebraic numbers. Here deg fp,γ = tp − 1 = dp. This polynomial is a
generalization of the polynomial gp from (5.2) in Section 5.

The next integral is a complex integral of an analytic function, computed (for instance) on complex
segments [γ, δ], [0, δ], [0, γ], etc. We consider

(7.7) Ip,γ(δ) =

∫ δ

γ

fp,γ(x)e
−x dx,

where δ is another element of W. We integrate by parts Ip,γ(δ) dp-times and find (see also (5.5)):

(7.8) Ip,γ(δ) = −e−δFp,γ(δ) + e−γFp,γ(γ),

where

(7.9) Fp,γ(x) = fp,γ(x) + f ′
p,γ(x) + ...+ f (dp)

p,γ (x).

We prove now that Ip,γ(δ) → 0, when p → ∞, for any fixed γ, δ ∈ W. Let us take an open disc
D of radius R such that W ⊂ D ⊂ C and take M ≥ 2R such that |e−x| ≤ M for any x ∈ D. Since
|x− βk| < 2R ≤ M for all k = 1, ..., t, it follows that

|Ip,γ(δ)| ≤
M tp

(p− 1)!
→ 0,

as p → ∞.

Now, let us come back to formula (7.9) and compute f
(j)
p,γ(x) at x = δ ̸= γ (if δ = γ, Ip,γ(δ) = 0) for

any j = 1, 2, ..., dp. Recall that

(7.10) Uγ(x) =
∏

θ∈W, θ ̸=γ

(x− θ)p.

Thus, f
(j)
p,γ(δ) = 0 for any 0 ≤ j < p and

(7.11) f (j)
p,γ(δ) =

1

(p− 1)!

j∑
k=0

(
j

k

)[
(x− γ)p−1

](j−k)
[Uγ(x)]

(k)

∣∣∣∣
x=δ

for dp ≥ j ≥ p. Hence,

f (j)
p,γ(δ) = Mj · p,

where Mj is an algebraic integer (inclusive zero) for any j = 0, 1, ..., dp.

We easily see that f
(j)
p,γ(γ) = 0 for any 0 ≤ j < p− 1. For p < j ≤ dp, we see that

(7.12) f (j)
p,γ(γ) =

1

(p− 1)!

j∑
k=0

(
j

k

)[
(x− γ)p−1

](j−k)
[Uγ(x)]

(k)

∣∣∣∣
x=γ

= Nj · p,
where Nj is an algebraic integer. Now

f (p−1)
p,γ (γ) = Uγ(γ)
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which is a nonzero algebraic integer (see (7.10)). Finally, we see that

Fp,γ(δ) = M · p

for δ ̸= γ, and Fp,γ(γ) = N · p+ Uγ(γ), where M,N are both algebraic integers. Now, let us come back
to formulas (7.8) and (7.6), and compute

t∑
i=1

b∗i e
βiIp,γ(βi) = −

t∑
i=1

b∗iFp,γ(βi) + e−γFp,γ(γ)
t∑

i=1

b∗i e
βi .

Since R =
∑t

i=1 b
∗
i e

βi = 0 (see (7.6)), we get:

t∑
i=1

b∗i e
βiIp,γ(βi) = −

t∑
i=1

b∗iFp,γ(βi) = L · p− b∗kUβk
(βk),

where βk = γ and L is an algebraic integer. Since b∗kUβk
(βk) is a nonzero algebraic integer, not divisible

by p for p large enough (see Lemma 6.29), we see that for p large enough

Sk(p)
def
= −

t∑
i=1

b∗i e
βiIp,βk

(βi)

is a nonzero algebraic integer. We see that

(7.13) S(p) =
t∏

k=1

Sk(p) = (−1)t
t∏

k=1

[
t∑

i=1

b∗iFp,βk
(βi)

]
is a symmetric polynomial in the ”variables” β1, β2, ..., βt with integer coefficients. Now, the set W =
{β1, β2, ..., βt} ⊂ Q[α1, α2, ..., αn] is closed to any Q-embedding σ : Q[α1, α2, ..., αn] → C. From Proposi-
tion 6.15 we see that W = ∪h

j=1O(βij ), where βij , j = 1, 2..., h, are some elements of W, and O(βij ) is
the orbit of βij . Let Vij ∈ Z[x] be the monic irreducible polynomial which has as the roots the element
of O(βij ). We see that the elements of W are the roots of the polynomial

V (x) =
h∏

j=1

Vij (x) ∈ Z[x].

Now,

S(p) = (−1)t
h∏

j=1

∏
βi0

∈O(βij
)

[
t∑

i=1

b∗iFp,βi0
(βi)

]

So, we can apply Theorem 6.1 for each polynomial P = Vij and find that each
∏

βi0∈O(βij
)

[∑t
i=1 b

∗
iFp,βi0

(βi)
]

is an integer number, i.e. S(p) ∈ Z. Moreover, it is a nonzero integer for p large enough, because for p

sufficiently large each i0-factor,
∑t

i=1 b
∗
iFp,βi0

(βi), in the product (7.13) is not zero (b∗i0Uβi0
(βi0) is not

divisible by p for p large enough). But S(p) → 0, when p → ∞, a contradiction. Indeed, for any i0 ∈ W,
Si0(p) → 0, when p → ∞, because each Ip,βi0

(βi) → 0, when p → ∞ for i = 1, 2, ..., t. Hence eα cannot
be an algebraic number, i.e it is a transcendental number.

In particular, if π was an algebraic number, then πi would be an algebraic number and so, eπi = −1
is a transcendental number (from the first part of Theorem 7.2), a new contradiction. Hence π is a
transcendental number. □

Theorem 7.2 has many consequences.

Corollary 7.3. Let r be a nonzero real algebraic number (Exp.
√
2,

3
√
5 + 4 5

√
3,etc.). Then sin r (r ̸= 0),

cos r, tan r , ln r (r > 0, r ̸= 1) are real transcendental numbers.
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Proof. Let us assume that sin r is an algebraic number. Since sin2 r + cos2 r = 1, we see that cos r =

±
√
1− sin2 r ∈ Q[sin r][cos r], where Q[sin r][cos r] : Q ≤ 2 · [Q[sin r] : Q] < ∞, because sin r is an

algebraic number and so, Q[sin r] : Q = degQ fsin r,Q, where fsin r,Q ∈ Q[x] is the minimal polynomial of

sin r over Q. Thus, eri = cos r+ i sin r is an algebraic number, a contradiction (see Theorem 7.2 and the
fact that Q is a field). The same reasoning also works for cos r. If tan r was an algebraic number, then

1

cos2 r
= 1 + tan2 r

would be an algebraic number too. So,

cos r = ± 1√
1 + tan2 r

is in an extension of degree at most 2 of Q[tan r], and Q[tan r] : Q < ∞, because tan r was supposed to
be an algebraic number over Q. Hence, cos r would be an algebraic number, a contradiction.

Now, let us assume that ln r = α is a nonzero algebraic number. Then eα = r is a transcendental
number, a contradiction (Theorem 7.2). □

8. Wantzel’s idea and the answer to the three famous Greek compass and
straight-edge problems

Given a segment of a straight-line [OA], O ̸= A, the Old Greek Mathematical School was interested
to construct, using only a compass and a straight-edge (in what follows we abbreviate this by a <<CS-
construction>>), a new segment of a given length or a point with some geometrical properties. Here are
three of the most known such problems which remained unsolved up to XIX-th century, when a french
mathematician, P. L. Wantzel, made an enlightened connection between such geometrical problems and
algebraic numbers [11]. In this way he succeeded to transform these geometrical problems into problems
of algebraic numbers. In the following, using our results from Section 6 and Section 7, we give reasonable
and rigorous answers to the next three geometrical Old Greek problems.

Problem 1. (Squaring a circle) Given a segment [OA] of a straightline d = OA, with the length, say
r = 1 unit, using only a CS-construction, find a square which has its area equal to the area of a circle
centered at O and of radius r = 1.

Problem 2. (Duplication of a cube) Given a segment of length l, using only a CS-construction, find
another segment of length L such that the volume of a cube of edge L is twice the volume of a cube of
edge l.

Problem 3. (Trisection of an arbitrary angle) Given an arbitrary angle ÂOB, using only a CS-

construction, find a new angle ĈOD such that the measure of ÂOB is three times the measure of ĈOD.
Now, we present in the following the great idea of Wantzel (1837) [11]. Let us start with a segment

[OA], O ̸= A, and consider the unity measure the length of [OA], i.e. l[OA] = 1. Let ∆ = OA be the
straight line generated by the distinct points O and A. We call it the real number line, because any other
segment of length m (of a straight-line) can be ”measured” on ∆; this means that always one can find a
point M ”on the right of O” such that the new segment [OM ] has its length equal to m. So, the ”distance”
from O to M is the length of our segment. We write M(m) and call m the coordinate of the point M. It
is clear that O(0) and A(1). Using only a compass one can easily construct all the points N(n), where n
is an integer (n ∈ Z). Take now a half-line Oδ ̸= OA, and k a nonzero arbitrary natural number. Using
a compass one can construct on Oδ the points Mi(i), i = 1, 2, ..., k, such that the segment [OMi] has
length equal to i. Now, using a CS-construction, we can draw parallel straight-lines λi to the straight-line
AMk (the straight-line which connect A and Mk) such that Mi ∈ λi for any i = 1, 2, ..., k − 1. Let P (xi)
= λi ∩ ∆ be the intersection point between the straight-line λi and the straight-line OA = ∆. Thales
theorem says that xi = i/k, i = 1, 2, ..., k. Thus we succeeded ”to construct Q+” on the real number line
∆. It is easy to make such a construction ”on the left” of O, on ∆. Thus we just made a CS-construction
for the rational number field Q on ∆.
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Now we use a CS-construction to draw a perpendicular straight-line Π at O on ∆. We denote
−→
i the

vector
−→
OA and

−→
j =

−−→
OB, where B is ”above” ∆ such that the length of [OB] is 1. Using the unity measure

[OB], we can represent like above all the rational numbers on the ”imaginary number line” Π = OB. We

call this couple (OA,OB), or (O,
−→
i ,

−→
j ), the complex plane.

Remark 8.1. If M1(x) ∈ ∆, x ∈ Q, and if M2(y) ∈ Π, y ∈ Q, then we can easily make a CS-construction
to find the fourth vertex P of the rectangle M2OM1P. We write P (x, y) and say that x and y are the
(rational) coordinates of the point P. We associate to the point P (x, y) the complex number z = x + iy.

Thus, using only CS-constructions, we can represent in the complex plane (O,
−→
i ,

−→
j ) all the algebraic

numbers of the algebraic field Q[i], where i =
√
−1.

Definition 8.2. A complex number a+ ib, a, b ∈ R is said to be a CS-number if the point M(a, b) in the

complex plane (O,
−→
i ,

−→
j ) can be obtained by a CS-construction.

It is easy to prove the following result.

Lemma 8.3. A complex number z = a + ib, a, b ∈ R is a CS-number if and only if a, b are both CS-
numbers.

Lemma 8.4. Let a, b be two nonzero real CS-numbers. Then a± b and ab are also CS-real numbers.

Proof. The first statement is obvious. Let us prove the second. Using the symmetry as a CS-construction

we can assume that a, b > 0. In the complex plane (O,
−→
i ,

−→
j ) we consider the following CS-constructed

points: A(1, 0), X(a, 0) and Y (0, b). Let us use a CS-construction to draw a parallel straight-line µ to AY
such that X ∈ µ. Let W (0, y) be the intersection between µ and Π = OY = OB. From Thales theorem
we see that 1/a = b/y, so ab = y, i.e. ab is a CS-number. □

Corollary 8.5. Let z1 = a1 + ib1 and z2 = a2 + ib2 be two CS-numbers. Then z1 ± z2 and z1z2 are also
CS-numbers.

Proof. Since z1, z2 are CS-numbers, a1, b1, a2, b2 are also CS-numbers (Lemma 8.3). Since a1±a2, b1±b2,
a1a2−b1b2 and a1b2+a2b1 are CS-numbers (Lemma 8.4), we see that z1±z2 and z1z2 are also CS-numbers
(lemma 8.3). □

Corollary 8.6. (se also Remark 8.1) Q and Q[i], i =
√
−1 contain only CS-numbers.

Proof. We just proved this statement in Remark 8.1. □

Lemma 8.7. Let z = a+ ib, a, b ∈ R be a nonzero CS-number. Then

1

z
=

a

a2 + b2
− i

b

a2 + b2

is also a CS-number. Hence, the subset of all CS-numbers in C is a subfield of C (see also Corollary 8.5)
called the CS-field.

Proof. Using symmetries relative to ∆ and Π, one can assume that a > 0, b ≥ 0. Lemma 8.4 says that
a, b, and a2 + b2 are CS-numbers. From Lemma 8.3 and Corollary 8.5, it remains to prove that if c ∈ R,
c ̸= 0 is a CS-number, then 1/c is also a CS-number. Indeed, let us consider the above complex plane

(O,
−→
i ,

−→
j ) and the points: C(c, 0) on ∆ and B(0, 1) on Π. Now, we draw a perpendicular straight-line δ

on BC such that B ∈ δ. Let D be the intersection point of δ and ∆. We apply the height theorem in the

rightangle triangle CBD (ĈBD = 90◦) and find D(−1/c). Thus 1/c is a CS-number. □

Lemma 8.8. Let d be a positive real CS-number. Then
√
d is also a CS-number.
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Proof. In the complex plane (O,
−→
i ,

−→
j ) we take the points A(1, 0) and D(d+1, 0). Let M be the midpoint

of [OD]. It is clear that M is a CS-constructible point. Now, we draw a circle C centered at M and of
radius r = (d + 1)/2. Let E be one of the two intersection points between this last circle C and the
perpendicular straight line η on ∆ = OA = OD, with A ∈ η. Using again the height theorem in the

rightangle triangle DEO (D̂EO = 90◦), we see that the length of the segment [AE] is exactly
√
d. Hence,√

d is a CS-number. □

Proposition 8.9. Let z = a + ib, a, b ∈ R be a nonzero CS-number. Then ±
√
z is also a CS-number.

In particular, if K ⊂ C is a subfield of C such that for any z ∈ K, z is a CS-number, and if w is a root
of a quadratic polynomial P ∈ K[x], then K[w] contains only CS-numbers.

Proof. Since always one can make a CS-construction to find the symmetric of a given point relative to

the straight-lines ∆ = OA and Π = OB, we take only the case +
√
z

def
=

√
z, where a ≥ 0 and b > 0. Let

|z| =
√
a2 + b2 the absolute value of z. Since z is a CS-number, then a, b, a2 + b2 are also CS-numbers.

So, Lemma 8.8 says that |z| is a CS-number. Let θ be the unique solution of the system of equations in
the variable θ (θ ∈ (0, π/2]): {

cos θ = a
|z| ≥ 0

sin θ = b
|z| > 0

.

If θ = 90◦, we can easily make a CS-construction for it. So, we assume that θ < 90◦. Since a, b, |z| are
CS-numbers,

√
|z| is also a CS-number. Consider the point M(a, b), so θ = ÂOM. Let us construct the

bisectrix Oδ of the angle ÂOM and take the point M1 ∈ Oδ such that OM1 =
√
|z|. It follows that M1

corresponds to the complex number
√
z =

√
|z|

(
cos θ

2 + i sin θ
2

)
. □

Corollary 8.10. The CS-field is closed to square roots, i.e. if z ̸= 0 is a CS-number, then ±
√
z are also

CS-numbers.

Proposition 8.11. Let α be a CS-number in C, α /∈ Q. Then α is an algebraic number, i.e. α ∈ Q,
degQ α = 2n for a natural number n, and there exists a sequence α0 = 1, α1, α2, ..., αj0−1 αj0 = α of
CS-numbers such that

Q = Q[α0] ⊂ Q[α1] ⊂ Q[α1, α2] ⊂ ... ⊂ Q[α1, α2, ..., αj0−1] ⊂ Q[α1, α2, ..., αj0−1][α],

where any simple extension, Q[α0, α1, ..., αj−1] ⊂ Q[α0, α1, ..., αj ], j = 1, 2, ..., j0 in this tower, has degree
2.

Proof. Let α = a + ib, a, b ∈ R be a nonzero CS-number. Let Mk(a, b) be the point in the complex
plane, which was successively obtained by k CS-constructions starting from O and A(1, 0). So, we see
that one can firstly construct a CS-number in Q or in Q[i] (Corollary 8.6). Let us denote this step by
”step 1”. The following step of CS-construction supplies a CS-number either in Q or in Q[i], or in a
quadratic extension of Q or of Q[i]. This is because at each step we either intersect two straight-lines
with coefficients in Q or in Q[i], or we intersect a circle with a line (or two circles) with coefficients in Q
or in Q[i]. So, after the ”step 2” we get a CS-number, say α2, such that degQ α2 = 1, 2, or 4, i.e. a power
of 2. Using mathematical induction on k, the number of steps, we easily find that α ∈ Q[α1, α2, ..., αs],
where 0 ≤ s ≤ k (s = 0 means that we remained in Q) and

Q ⊂ Q[α1] ⊂ Q[α1, α2] ⊂ ... ⊂ Q[α1, α2, ..., αs],

such that Q[α1, α2, ..., αj ] : Q[α1, α2, ..., αj−1] = 2, j = 1, 2, ..., s. Thus degQ α = 2s with s ∈ N and, if
α ∈ Q[α1, α2, ..., αj0 ] \Q[α1, α2, ..., αj0−1], then

Q ⊂ Q[α1] ⊂ Q[α1, α2] ⊂ ... ⊂ Q[α1, α2, ..., αj0−1] ⊂ Q[α1, α2, ..., αj0−1][α].

□
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Theorem 8.12. Any algebraic number α is a CS-number if and only if Q[α1, α2, ..., αs] : Q = 2n, where
α = α1, α2, ..., αs are the conjugates of α over Q and n ∈ N.

Proof. If n = 0, we have nothing to prove. Let n be a positive integer, assume that Q[α1, α2, ..., αs] : Q
= 2n, and let us consider the extensions of fields

Q = L ⊂ K = Q[α1, α2, ..., αs].

Now we can apply Corollary 6.17 to the extension Q = L ⊂ K and find a tower of fields

Q ⊂ Q[β1] ⊂ Q[β1, β2] ⊂ ... ⊂ Q[β1, β2, ..., βs] = K,

such that
Q[β1, β2, ..., βi] : Q[β1, β2, ..., βi−1] = 2

for all i = 1, 2, ..., s. Here β0 = 1. Since there exists i0 ∈ {1, 2, ..., s} such that

α ∈ Q[β1, β2, ..., βi0 ] \Q[β1, β2, ..., βi0−1],

we see that
Q[β1, β2, ..., βi0 ] = Q[β1, β2, ..., βi0−1][α].

Since all β1, β2, ..., βi0−1 are CS-numbers (Proposition 8.9), we see that α itself is a CS-number, being an
element in the quadratic extension

Q[β1, β2, ..., βi0−1] ⊂ Q[β1, β2, ..., βi0−1][α].

Conversely, let us assume that α is a CS-number, α ∈ Q. So, there exists a tower of fields

(8.1) Q = L0 ⊂ L1 ⊂ ... ⊂ Lh = Q[α], h ∈ {0, 1, ...},
such that Lj : Lj−1 = 2 for any j = 1, 2, ..., h (Proposition 8.11). Take γj ∈ Lj \ Lj−1 and find that
Lj = Lj−1[γj ] for any j = 1, 2, ..., h. Let σ1, σ2, ..., σs, s = 2h = degQ α, be all the Q-embeddings of Q[α]
into C. For any j = 1, 2, ..., s, we take the range of the tower (8.1) through σj :

Q = L0 ⊂ σj(L1) ⊂ ... ⊂ σj(Lh) = Q[σj(α)],

and see that all σj(α) = αj , j = 1, 2, ..., s, the conjugates of α, are CS-numbers (Proposition 8.9).
From Lemma 8.7 we conclude that any element of Q[α1, α2, ..., αs] is a CS-number. We use now the
basic Primitive Element Theorem ([7], theorem 4.6) and find an element β ∈ Q[α1, α2, ..., αs] such that
Q[α1, α2, ..., αs] = Q[β]. Since β is a CS-number, degQ β = 2n = Q[β] : Q (Proposition 8.11). □

Remark 8.13. The condition degQ α = 2n, n > 1 is not sufficient for the CS-construction of α. Here
is a counterexample and an application of Theorem 8.12. Let α be a root of the polynomial P (x) =
x4 − x+1 ∈ Q[x]. First of all let us prove that P is irreducible over Q. Since the only possible roots of P
in Q are ±1, we see that P has no roots in Q. So, the unique possibility for P to decompose itself over
Q is:

P (x) = (x2 + ax+ b)(x2 + cx+ d),

where a, b, c, d ∈ Q and both factors are irreducible over Q. Identifying the coefficients we get the system:
a+ c = 0

b+ d+ ac = 0
ad+ bc = −1

bd = 1

.

It is easy to see that this system reduces to the equation

a6 − 4a2 − 1 = 0,

which has no solution in Q. Hence P is irreducible over Q. We prove now that the extension Q ⊂ Q[α]
of degree 4 has no subextension of degree 2. Assume that there exists an element β of degree 2 in Q[α].
Since α4 = α− 1, degQ α = 4, and because we can assume that β2 = q ∈ Q, this β can be written as:

β = a0 + a1α+ a2α
2 + a3α

3, a0, a1, a2, a3 ∈ Q.
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and
β2 = a20 − a22 + a22α+ (a21 − a23)α

2 + a23α
3+

+2
[
−a1a3 + (a0a1 + a1a3 − a2a3)α+ (a0a2 + a2a3)α

2 + (a0a3 + a1a2)α
3
]
.

Since {1, α, α2, α3} are linear independent over Q (deg fα,Q = 4, not less), a0, a1, a2, a3 must be rational
solutions of the system:  a22 + 2a0a1 + 2a1a3 − 2a2a3 = 0

a21 − a23 + 2a0a2 + 2a2a3 = 0
a23 + 2a0a3 + 2a1a2 = 0.

.

If a3 = 0, we obtain a1 = a2 = a3 = 0, so β = a0 ∈ Q. Let us assume that a3 ̸= 0 and divide the
equations of the system by a23. Now, denoting a0/a3 = b0, a1/a3 = b1 and a2/a3 = b2, we finally obtain
the following system:  b22 + 2b0b1 + 2b1 − 2b2 = 0

b21 − 1 + 2b0b2 + 2b2 = 0
1 + 2b0 + 2b1b2 = 0

, b0, b1, b2 ∈ Q.

By the elimination of b0, b1 we obtain the following equation in the variable b2
def
= y :

8y7 − 16y6 − 7y4 + 24y3 − 16y2 − y + 1 = 0.

By checking y = ±1, ±1/2, ±1/4, ±1/8 we see that these numbers cannot be solutions of the above
equation. Thus, a3 ̸= 0 gives rise to a contradiction. Hence, in Q[α] we have no subextension of
degree 2 over Q, i.e. α is not a CS-number (Proposition 8.11). From Theorem 8.12 we can immediately
conclude that Q[α = α1, α2, α3, α4] : Q = 12, or 24. where and α1, α2, α3, α4 are all the conjugates of
α. Indeed, P (x) = (x − α)Q(x), Q(x) ∈ Q[α][x], in Q[α]. If Q had a factor of degree 2 in Q[α], then
Q[α1, α2, α3, α4] : Q = 4, or 8, i.e. a power of 2. From Theorem 8.12 we would obtain that α is a
CS-number, a contradiction. Thus Q(x) is irreducible over Q[α] and its degree over Q[α] is 3. Thus
Q[α1, α2, α3, α4] : Q = 12, or 24.

Remark 8.14. (Answer to Problem 1) Everything reduces to a CS-construction for
√
π. If one could

do this, from Proposition 8.11 we find that
√
π is an algebraic number, or that π itself is an algebraic

number, a contradiction (Theorem 7.2). Hence, problem Problem 1 has no solution at all.

Remark 8.15. (Answer to Problem 2) The question reduces to a CS-construction for 3
√
2. But 3

√
2 is

not a CS-number because degQ
3
√
2 = 3, which is not a power of 2 (see Proposition 8.11). Hence, problem

Problem 2 has no solution at all.

Remark 8.16. (Answer to Problem 3) Let us assume that after a CS-construction we succeed to
construct an angle of 20◦ = 60◦/3. It is clear that an angle of of 60◦ has a CS-construction. For instance,

take a point Y ∈ Π (in the complex plane (O,
−→
i ,

−→
j )), where Π = OB, B(0, 1), such that the length of

[AY ] is 2 units. Then the angle ÔAY has the measure equal to 60◦. Since Y (0,
√
3), we see that Y is a

CS-number. If we could find a CS-construction for an angle of 20◦, then α = cos 20◦ is a CS-number.
From the known formula:

cos 3x = 4 cos3 x− 3 cosx,

we find (for x = 20◦) that
8α3 − 6α− 1 = 0,

i.e. that α is a root of the equation
8x3 − 6x− 1 = 0.

It is easy to see that this polynomial is irreducible over Q (it has no rational root). So, degQ α = 3, which
is not a power of 2. Hence α is not a CS-number (Proposition 8.11), i.e. Problem 3 has no solution.
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1. Introduction

A well-known problem in submanifold theory is the immersibility of a Riemannian manifold in a
Euclidean space. The embedding theorem of J.F. Nash [19] states that every Riemannian manifold can
be isometrically embedded in Euclidean spaces with sufficiently high codimension. There were several
reasons for which Nash’s theorem was difficult to apply. One reason is that it generally requires a
large codimension for a Riemannian manifold to support isometric embeddings in Euclidean spaces.
Another reason is that at that time there were not known general optimal relationships between the
classical intrinsic invariants and the principal extrinsic invariants for arbitrary submanifolds of Euclidean
spaces, excepting the three fundamental equations of submanifolds. This leads to another fundamental
problem in submanifold theory: Find simple relationship between the main extrinsic invariant (squared
mean curvature) and intrinsic invariants of a submanifold. In order to provide some answers to this
fundamental problem, B.Y. Chen in [7], [8] introduced new types of Riemannian invariants, known as
Chen δ-invariants.

The Chen first invariant δM of a Riemannian manifold M is defined by

δM (p) = τ(p)− (infK)(p).

where τ is the scalar curvature of M and K(π) denotes the sectional curvature of a plane section π in
TpM , p ∈M .

For n-dimensional submanifolds M in a real space form R(c) of constant sectional curvature c, the
following basic inequality involving the intrinsic invariant δM and the squared mean curvature was es-
tablished in [7]

δM ≤ n2(n− 2)

2(n− 1)
∥H∥2 + 1

2
(n+ 1)(n− 2)c,(1.1)

where H is the mean curvature vector.
A slant submanifold [6] is a submanifold N of an almost Hermitian manifold (M,J) with constant

Wirtinger angle (or Kaehler angle). The Wirtinger angle θ(X) of a tangent vector X to N at a point
p ∈ N is the angle between JX and the tangent space of N at p. Special cases are complex submanifolds
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(θ = 0) and totally real submanifolds (θ = π
2 ). Furthermore A. Lotta [17] introduced the class of slant

submanifolds of almost contact metric manifolds.
A semi-slant submanifold of a Kahlerian manifold is a submanifold whose tangent bundle is the direct

sum of a complex distribution and a slant distribution with the slant angle θ ̸= 0 (see [22]). Moreover,
Cabrerizo et al. [4] introduced the class of a semi-slant submanifold of a Sasakian manifold. The
authors defined and studied bi-slant and semi-slant submanifolds of an almost contact metric manifold, in
particular a Sasakian one. They proved a characterization theorem for semi-slant submanifolds and obtain
integrability conditions for the distributions which are involved in the definition of such submanifolds.
Cioroboiu [12] established Chen inequalities for semi-slant submanifolds in Sasakian space forms by using
subspaces orthogonal to the Reeb vector field.

There were many authors who studied Chen’s inequalities for different submanifolds in different types
of ambient spaces (see [1], [2], [5], [10], [13], [14], [16], [20], [23]).

2. Preliminaries

In this section, we recall some definitions and notations used throughout this paper.
Let M be a (2m+1)-dimensional almost contact metric manifold endowed with a Riemannian metric

g, a tensor field ϕ of type (1, 1), a structure vector field ξ and a 1-form η which satisfy

ϕ2X = −X + η(X)ξ,

ϕξ = 0, η(ξ) = 1, η(ϕX) = 0, η(X) = g(X, ξ),

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), g(ϕX, Y ) = −g(X,ϕY ).

We denote by ∇ the Levi-Civita connection of g. If, in addition,

(∇Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕX,

for any vector fields X,Y on M , then M is said to be a Kenmotsu manifold. One also has

∇Xξ = X − η(X)ξ = −ϕ2X.

A Kenmotsu manifold with constant ϕ-holomorphic sectional curvature c is called a Kenmotsu space
form and is denoted by M(c). The curvature tensor R of a Kenmotsu space form is given by [15]

4R(X,Y )Z =(c− 3)[g(Y,Z)X − g(X,Z)X] + (c+ 1)[g(ϕY,Z)ϕX

− g(ϕX,Z)ϕY − 2g(ϕX, Y )ϕZ + g(X,Z)η(Y )ξ

− g(Y,Z)η(X)ξ + η(X)η(Z)Y − η(Y )η(Z)X],(2.1)

for any X,Y ∈ TM .
Let M be an n-dimensional submanifold of a Kenmotsu space form M equipped with a Riemannian

metric g. The Gauss and Weingarten formulae are given respectively by

∇XY = ∇XY + h(X,Y ),

∇XY = −ANX +∇⊥
XN,

for all X,Y ∈ TM and N ∈ T⊥M , where ∇ is the Levi-Civita connection on M and ∇⊥ the normal
connection, respectively. The second fundamental form h is related to the shape operator A by

g(h(X,Y ), N) = g(ANX,Y ).

The equation of Gauss is given by

R(X,Y, Z,W ) = R(X,Y, Z,W )− g(h(X,Z), h(Y,W )) + g(h(X,W ), h(Y, Z)),(2.2)

for all X,Y, Z,W tangent to M .
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Let {e1, ..., en} be an orthonormal basis of the tangent space TpM . The scalar curvature τ at p is
defined by

(2.3) τ(p) =
∑

1≤i<j≤n

K(ei ∧ ej),

where K(ei ∧ ej) denotes the sectional curvature of the plane section spanned by ei, ej .
In particular, if we put en = ξ, then (2.3) implies

2τ =
∑

1≤i̸=j≤n−1

K(ei ∧ ej) + 2
n−1∑
i=1

K(ei ∧ ξ).(2.4)

Let L be a k-plane section of TpM and X a unit vector in L; we choose an orthonormal basis {e1, ..., ek}
of L such that e1 = X. The Ricci curvature RicL of L at X is defined by

(2.5) RicL(X) = K12 +K13 + · · ·+K1k.

We simply call it the k-Ricci curvature.
The mean curvature vector H(p) at p ∈M is given by

(2.6) H(p) =
1

n

n∑
i=1

h(ei, ei).

If we put hrij = g(h(ei, ej), er), i, j = 1, ..., n, r ∈ {n + 1, ..., 2m + 1}, the squared norm of the second
fundamental form h is

∥h∥2 =

2m+1∑
r=n+1

n∑
i,j=1

(hrij)
2.

For any X ∈ TM , we can write ϕX = PX + FX, where PXand FX are the tangential and normal
components of ϕX, respectively. We denote

∥P∥2 =
n∑

i,j=1

g2(Pei, ej).

Definition 2.1. A submanifold is called totally geodesic if the second fundamental form vanishes iden-
tically; it is totally umbilical if h(X,Y ) = g(X,Y )H, for any tangent vectors X,Y on M .

Definition 2.2. [4] A differentiable distribution D on M is called a slant distribution if for each p ∈M
and each non-zero vector X ∈ Dp the angle θD(X) between ϕX and the vector subspace Dp is constant,
i.e., independent on the choice of X; θD(X) is called the slant angle.

Definition 2.3. [4] A submanifold M tangent to the structure vector field ξ is said to be a bi-slant
submanifold of M if there exist two orthogonal distributions D1 and D2 such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕ D2 ⊕ {ξ}, where {ξ} is the 1-
dimensional distribution spanned by ξ,

(ii) D1, D2 are slant distributions with slant angles θ1, θ2.

Definition 2.4. [4] A submanifold M tangent to ξ is said to be a semi-slant submanifold of M if there
exist two orthogonal distributions D1 and D2 on M such that

(i) TM admits the orthogonal direct decomposition TM = D1 ⊕D2 ⊕ {ξ},
(ii) The distribution D1 is an invariant distribution, i.e., ϕ(D1) = D1,
(iii) The distribution D2 is a slant distribution with slant angle θ ̸= 0.

A bi-slant submanifold of an almost contact metric manifoldM is called proper if the slant distributions
D1 and D2 have the slant angles θ1, θ2 ̸= 0, π2 .
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Suppose M is a proper bi-slant submanifold with dimension n = 2d1 + 2d2 + 1 in M . Let us consider
an orthonormal basis of TpM

e1, e2 = sec θ1Pe1, · · · , e2d1−1, e2d1
= sec θ1Pe2d1−1, e2d1+2 = sec θ2Pe2d1+1,

· · · , e2d1+2d2−1, e2d1+2d2 = sec θ2e2d1+2d2−1, e2d1+2d2+1 = ξ.

Then

g2(ϕei, ei+1) =

{
cos2 θ1, for i ∈ {1, 3, ..., 2d1 − 1},
cos2 θ2, for i ∈ {2d1 + 1, ..., 2d1 + 2d2 − 1},

(2.7)
n∑

i,j=1

g2(ϕej , ei) = 2(d1 cos
2 θ1 + d2 cos

2 θ2).

3. Chen First Inequality For Bi-Slant Submanifolds in Kenmotsu Space Forms

Pandey et al. [21] obtained B.Y. Chen inequalities for a bi-slant submanifold M of a Kenmotsu space
form, when the structure vector field ξ is tangent toM . In this section, we prove Chen first inequality for
proper bi-slant submanifolds in Kenmotsu space forms, by using orthogonal subspaces to the structure
vector field ξ.

We need an algebric lemma from [7].

Lemma 3.1. [7] Let a1, ...ak, b be k + 1 (k ≥ 2) real numbers such that

(
k∑

i=1

ai)
2 = (k − 1)(

k∑
i=1

a2i + b).

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = ... = ak.

Theorem 3.2. Let ψ : M → M(c) be an isometric immersion of an n-dimensional (n ≥ 3) proper
bi-slant submanifold M in a (2m+ 1)-dimensional Kenmotsu space form M(c). Then
(i) For any plane section π invariant by P and tangent to D1,

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + n(n− 3)(c− 3)

8

+ 3
c+ 1

4
[(d1 − 1) cos2 θ1 + d2 cos

2 θ2]− (n− 1).(3.1)

(ii) For any plane section π invariant by P and tangent to D2,

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + n(n− 3)(c− 3)

8

+ 3
c+ 1

4
[d1 cos

2 θ1 + (d2 − 1) cos2 θ2]− (n− 1).(3.2)

The equality case of the inequality (3.1) or (3.2) holds at a point p ∈ M if and only if there exist an
orthonormal basis {e1, e2, ..., en = ξ} of TpM and an orthonormal basis {en+1, ..., e2m, e2m+1} of T⊥

p M

such that the shape operators of M in M(c) at p have the following forms

An+1 =


a 0 0 · · · 0
0 µ− a 0 · · · 0
0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 0 µ

 ,
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Ar =


hr11 hr12 0 · · · 0
hr12 −hr22 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 0 0

 , r ∈ {n+ 1, ..., 2m+ 1}.

Proof. We assume thatM is an (n = 2d1+2d2+1)-dimensional proper bi-slant submanifold of a Kenmotsu
space form M(c) with constant ϕ-holomorphic sectional curvature c.

Let p ∈M and {e1, e2, ..., en = ξ} an orthonormal basis of the tangent space TpM and {en+1, en+2, ..., e2m+1}
an orthonormal basis of T⊥

p M .
From the equation (2.4), one has

2τ =
n∑

i,j=1

R(ei, ej , ej , ei) =
n−1∑
i̸=j

R(ei, ej , ej , ei) + 2
n−1∑
i=1

R(ei, ξ, ξ, ei).(3.3)

In the Gauss equation (2.2), we put X = W = ei and Y = Z = ej , ∀i, j ∈ 1, 2, ..., n, and we take the
summation over 1 ≤ i, j ≤ n. We get

n−1∑
i̸=j

R(ei, ej , ej , ei) =
n−1∑
i̸=j

R(ei, ej , ej , ei)−
n−1∑
i̸=j

g(h(ei, ej), h(ei, ej)) +

n−1∑
i̸=j

g(h(ei, ei), h(ej , ej)).(3.4)

By the formula (2.1) of the Riemannian curvature tensor of a Kenmotsu space form M(c), we have

R(ei, ej , ej , ei) =
c− 3

4
[g(ej , ej)g(ei, ei)− g(ei, ej)g(ej , ei)]

+
c+ 1

4
{η(ei)η(ej)g(ej , ei)− η(ej)η(ej)g(ei, ei)

+ η(ej)η(ei)g(ei, ej)− η(ei)η(ei)g(ej , ej)

− g(ϕei, ej)g(ϕej , ei) + g(ϕej , ej)g(ϕei, ei)

+ 2g(ei, ϕej)g(ϕej , ei)}.

Then

(3.5)

n−1∑
i̸=j

R(ei, ej , ej , ei) =
c− 3

4
(n− 1)(n− 2) + 3

c+ 1

4

n−1∑
i̸=j

g2(ϕei, ej).

If we substitute the equation (3.5) in the equation (3.4), we get

n−1∑
i̸=j

R(ei, ej , ej , ei) =
c− 3

4
(n− 1)(n− 2) + 3

c+ 1

4

n−1∑
i̸=j

g2(ϕei, ej)

−
n−1∑
i̸=j

g(h(ei, ej), h(ei, ej)) +

n−1∑
i̸=j

g(h(ei, ei), h(ej , ej)).(3.6)

The equation (3.3) becomes

2τ =
n∑

i,j=1

R(ei, ej , ej , ei) =
c− 3

4
(n− 1)(n− 2) + 3

c+ 1

4

n−1∑
i̸=j

g2(ϕei, ej)

−
n−1∑
i̸=j

g(h(ei, ej), h(ei, ej)) +
n−1∑
i̸=j

g(h(ei, ei), h(ej , ej)) + 2
n−1∑
i=1

R(ei, ξ, ξ, ei).(3.7)
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Calculate

n−1∑
i=1

K(ξ ∧ ej) =
n−1∑
j=1

R(ei, ξ, ξ, ei) =
n−1∑
i=1

R(ei, ξ, ξ, ei)

+
n−1∑
i=1

g(h(ξ, ξ), h(ej , ej))−
n−1∑
i=1

g(h(ξ, ej), h(ξ, ej)).(3.8)

From the properties of a Kenmotsu manifold one has h(ξ, ξ) = h(ξ,X) = 0. Then

n−1∑
i=1

R(ei, ξ, ξ, ei) = −(n− 1)(3.9)

If we substitute the equation (3.9) in (3.7) we get

2τ =
n∑

i,j=1

R(ei, ej , ej , ei) =
c− 3

4
(n− 1)(n− 2)

+ 3
c+ 1

4
∥P∥2 − ∥h∥2 + n2∥H∥2 − 2(n− 1),(3.10)

where

∥P∥2 =
n∑

i,j=1

g2(ϕei, ej) = 2(d1 cos
2 θ1 + d2 cos

2 θ2).

Now denote by

ϵ = 2τ − n2(n− 2)

n− 1
∥H∥2 − c− 3

4
(n− 1)(n− 2)

− 3
c+ 1

4
∥P∥2 + 2(n− 1).(3.11)

The equation (3.10) is equivalent to

(3.12) n2∥H∥2 = (n− 1)(ϵ+ ∥h∥2).

Let p ∈M,π ⊂ TpM , dim π = 2, and π orthogonal to ξ and invariant by P .
Now, we consider the following two cases:
Case I. The plane section π is tangent to D1. We may assume that π is spanned by the orthonormal

basis {e1, e2}. We take en+1 in the direction of mean curvature vector H. The relation (3.12) becomes

(3.13)

(
n∑

i=1

hn+1
ii

)2

= (n− 1)


n∑

i,j=1

2m+1∑
r=n+1

(
hrij
)2

+ ϵ

 ,

or equivalently,

(
n∑

i=1

hn+1
ii )2 = (n− 1)

 n∑
i=1

(
hn+1
ii

)2
+
∑
i̸=j

(
hn+1
ij

)2
+

2m+1∑
r=n+2

n∑
i,j

(
hrij
)2

+ ϵ

 .(3.14)

Using Lemma 3.1 we derive

(3.15) 2hn+1
11 hn+1

22 ⩾
∑
i̸=j

(
hn+1
ij

)2
+

2m+1∑
r=n+2

n∑
i,j=1

(
hrij
)2

+ ϵ.
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On the other hand, we have

K(π) = R(e1, e2, e2, e1) = g(h(e1, e1), h(e2, e2))

− g(h(e1, e2), h(e1, e2)) +
c− 3

4
+ 3 cos2 θ1

c+ 1

4
.

Then

K(π) =
2m+1∑
r=n+1

[
hr11h

r
22 − (hr12)

2
]
+
c− 3

4
+ 3 cos2 θ1

(
c+ 1

4

)
.

By using (3.15) we obtain

K(π) ≥ c− 3

4
+ 3 cos2 θ1

(
c+ 1

4

)
+

1

2

2m+1∑
r=n+2

n−1∑
i,j=3

(hrij)
2

+
1

2

2m+1∑
r=n+2

(hr11 + hr22)
2 +

2m+1∑
r=n+1

∑
j>2

[
(hr1j)

2 + (hr2j)
2
]
+
ϵ

2
.

From the last equation we get

(3.16) K(π) ⩾
c− 3

4
+ 3 cos2 θ1

(
c+ 1

4

)
+
ϵ

2
.

If we substitute (3.11) in above relation, we obtain

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + n(n− 3)(c− 3)

8

+ 3
c+ 1

4
[2(d1 − 1) cos2 θ1 + 2d2 cos

2 θ2]− (n− 1),(3.17)

which is the inequality (3.1)

Case II
If the plane section π is tangent to D2 and invariant by P , similarly we get

τ −K(π) ≤ n2(n− 2)

2(n− 1)
∥H∥2 + n(n− 3)(c− 3)

8

+ 3
c+ 1

4
[2d1 cos

2 θ1 + 2(d2 − 1) cos2 θ2]− (n− 1),

which is the inequality (3.2)
The case of equality of the inequality (3.1) at a point p ∈M holds if and only if equalities in inequalities

(3.15), (3.16) and Lemma (3.1) hold, i.e.,

(3.18)


hn+1
ij = 0, ∀i ̸= j, i, j > 2,

hrij = 0, ∀i ̸= j i, j > 2, r = n+ 1, ..., 2m+ 1,
hr11 + hr22 = 0, ∀r = n+ 2, ..., 2m+ 1,
hr1j = hr2j = 0, ∀j > 2, r = n+ 1, ..., 2m+ 1,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

Moreover we may choose e1, e2 such that hn+1
12 = 0 and we denote by a = hn+1

11 , b = hn+1
22 ,

µ = hn+1
33 = · · · = hn+1

nn .
Then we obtain the desired forms for the shape operators Ar, r ∈ {n+1, · · · , 2m+1}. Also, if µ = 0,

the submanifold is minimal. □
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4. Ricci curvature and squared mean curvature

B.Y. Chen in [9] established a sharp relationship involving the Ricci curvature and the squared mean
curvature on an n-dimensional submanifold M in a Riemannian space form R(c) of constant sectional
curvature c. For any unit tangent vector X at p ∈M , its Ricci curvature satisfies

Ric(X) ≤ (n− 1)c+
n2

4
∥H∥2.

The above inequality is called Chen-Ricci inequality.
On the other hand, K. Arslan et al. [3] established a Chen-Ricci inequality for submanifolds in

Kenmotsu space forms. Also I. Mihai [18] obtained a Chen-Ricci inequality for submanifolds in Sasakian
space forms.

D.W. Yoon [24] established the following Chen-Ricci inequality for bi-slant submanifolds in a cosym-
plectic space form.

Theorem 4.1. [24] Let M be an n-dimensional bi-slant submanifold satisfying g(X,ϕY ) = 0, for any
X ∈ D1 and any Y ∈ D2, in a cosymplectic space form M(c). Then

(1) For each unit vector X ∈ TpM orthogonal to ξ and
(i) X is tangent to D1, we have

(4.1) Ric(X) ≤ 1

4

{
(n− 1)c+

1

2
(3 cos2 θ1 − 2)c+ n2 ∥ H ∥2

}
.

(ii) X is tangent to D2, we have

(4.2) Ric(X) ≤ 1

4

{
(n− 1)c+

1

2
(3 cos2 θ2 − 2)c+ n2 ∥ H ∥2

}
.

(2) If H(p) = 0, then a unit tangent vector X at p satisfies (4.1) or (4.2) if and only if X ∈ Np,
where Np = {X ∈ TpM |h(X,Y ) = 0,∀Y ∈ TpM}.

(3) The equality case of (4.1) and (4.2) hold identically for all unit tangent vectors orthogonal to ξ
at p if and only if p is a totally geodesic point.

In this section we will study the relation between the Ricci curvature and the squared mean curvature
for bi-slant submanifolds in a Kenmotsu space form.

Theorem 4.2. Let M be an n-dimensional bi-slant submanifold in a (2m + 1)-dimensional Kenmotsu
space form M(c). Then:

(1) For each unit vector X ∈ TpM and
(i) X tangent to D1, we have

Ric(X) ≤ 1

4
n2∥H∥2 + (n− 2)

c− 3

4
+ 3

c+ 1

8
cos2 θ1 − 1.(4.3)

(ii) X tangent to D2, we have

Ric(X) ≤ 1

4
n2∥H∥2 + (n− 2)

c− 3

4
+ 3

c+ 1

8
cos2 θ2 − 1.(4.4)

(2) If H(p) = 0, then a unit tangent vector X at p satisfies (4.3) or (4.4) if and only if X ∈ Np.
(3) The equality cases of (4.3) and (4.4) hold identically for all unit tangent vectors orthogonal to ξ

at p if and only if p is a totally geodesic point.
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Proof.
(1) Let X ∈ TpM be a unit tangent vector X at p. We choose an orthonormal basis {e1, · · · , en =

ξ, en+1, · · · , e2m+1} in TpM(c) such that e1, · · · , en are tangent to M at p, with e1 = X. We recall the
equation (3.10)

2τ =
n∑

i,j=1

R(ei, ej , ej , ei) =
c− 3

4
(n− 1)(n− 2)

+ 3
c+ 1

4
∥P∥2 − ∥h∥2 + n∥H∥2 − 2(n− 1).(4.5)

Then we can write

n2∥H∥2 = 2τ − c− 3

4
(n− 1)(n− 2)− 3

c+ 1

4
∥P∥2 + ∥h∥2 + 2(n− 1).(4.6)

which leads to

n2∥H∥2 = 2τ +
2m+1∑
r=n+1

(hr11)2 + (hr22 + ...+ hrmm)2 + 2
∑
i<j

(hrij)
2


− 2

2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj −

c− 3

4
(n− 1)(n− 2)− 3

c+ 1

4
∥P∥2 + 2(n− 1).

It follows that

n2∥H∥2 = 2
∑

2≤i<j≤n

Kij + 2Ric(X) +
1

2

2m+1∑
r=n+1

(hr11 + · · ·+ hrnn)
2

+
1

2

2m+1∑
r=n+1

(hr11 − hr22 − · · · − hrnn)
2

+ 2

2m+1∑
r=n+1

∑
1≤i<j≤n

(hrij)
2 − 2

2m+1∑
r=n+1

∑
2≤i<j≤n

hriih
r
jj

− c− 3

4
(n− 1)(n− 2)− 3

c+ 1

4
∥P∥2 + 2(n− 1).

Then we get

n2∥H∥2 − 1

2

2m+1∑
r=m+2

(hr11 + · · ·+ hrnn)
2 = 2

∑
2≤i<j

Kij + 2Ric(X)

+
1

2

2m+1∑
r=n+1

(hr11 − hr22 − · · · − hrnn)
2

+ 2
2m+1∑
r=n+1

∑
i<j

(hrij)
2 − 2

2m+1∑
r=n+1

∑
2≤i<j

hriih
r
jj

− c− 3

4
(n− 1)(n− 2)− 3

c+ 1

4
∥P∥2 + 2(n− 1).(4.7)

We compute ∑
2≤i<j≤n

Kij =
∑

2≤i<j≤n−1

R(ei, ej , ej , ei) + 2
m∑
i=2

R(ei, ξ, ξ, ei).(4.8)

Romanian Journal of Mathematics and Computer Science Issue 2, Vol. 12 (2022)

60



From the Gauss equation

n−1∑
2≤i<j

R(ei, ej , ej , ei) =
2m+1∑
r=n+1

∑
2≤i<j

[
hriih

r
jj − (hij)

2
]
+

n−1∑
2≤i<j

R(ei, ej , ej , ei).(4.9)

we get

n−1∑
2≤i<j

R(ei, ej , ej , ei) =
c− 3

8
(n− 2)(n− 3) + 3

c+ 1

4

∑
2≤i<j≤n

g(ϕei, ej).(4.10)

By substituting the equation (4.10) in equation (4.9)∑
2≤i<j≤n−1

R(ei, ej , ej , ei) =
2m+1∑
r=n+1

∑
2≤i<j≤n−1

[
hriih

r
jj − (hij)

2
]

+
c− 3

8
(n− 2)(n− 3) + 3

c+ 1

4

∑
2≤i<j≤n

g(ϕei, ej)(4.11)

and then by the equation (4.8) we have∑
2≤i<j

Kij =
c− 3

8
(n− 2)(n− 3) + 3

c+ 1

4

∑
2≤i<j≤n

g(ϕei, ej)

+ 2
2m+1∑
r=n+1

∑
2≤i<j

[
hriih

r
jj − (hij)

2
]
+ 2

n−1∑
i=2

R(ei, ξ, ξ, ei).(4.12)

Similarly

n−1∑
i=2

R(ei, ξ, ξ, ei) = −(n− 2).(4.13)

Then ∑
2≤i<j

Kij =
c− 3

8
(n− 2)(n− 3) + 3

c+ 1

8
[∥P∥2 − ∥Pe1∥2]

+ 2

2m+1∑
r=n+1

∑
2≤i<j

[
hriih

r
jj − (hij)

2
]
− (n− 2).(4.14)

Therefore

Ric(X) ≤ 1

4
n2∥H∥2 + (n− 2)

c− 3

4
+ 3

c+ 1

8
∥Pe1∥2 − 1.(4.15)

(i) If X is tangent to D1, we have ∥Pe1∥2 = cos2 θ1; then from (4.15) we obtain

Ric(X) ≤ 1

4
n2∥H∥2 + (n− 2)

c− 3

4
+ 3

c+ 1

8
cos2 θ1 − 1.(4.16)

(ii) If X is tangent to D2, we have ∥Pe1∥2 = cos2 θ2; then from (4.15) we obtain

Ric(X) ≤ 1

4
n2∥H∥2 + (n− 2)

c− 3

4
+ 3

c+ 1

8
cos2 θ2 − 1.(4.17)

(2) Assume H(p) = 0. Equality holds in (4.3) or (4.4) if and only if{
hr12 = hr13 = · · · = hr1m = 0,
hr11 = hr22 + · · ·+ hrmm, r ∈ {m+ 2, · · · , 2m+ 1}.

Then hr1j = 0, for all j ∈ {1, · · · ,m+ 1}, r ∈ {m+ 2, · · · , 2m+ 1}, that is X ∈ Np.
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(3) The equality cases of (4.3) and (4.4) hold for all unit tangent vectors at p if and only if{
hrij = 0, i ̸= j, r ∈ {m+ 2, · · · , 2m+ 1},
hr11 + · · ·+ hrmm − 2hrii = 0, i ∈ {1, · · · ,m}, r ∈ {m+ 2, · · · , 2m+ 1}.

It follows that p is a totally geodesic point.
□
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1. Introduction

Let C0 and C1 be the set of all real and complex numbers respectively. Bicomplex numbers are defined
by C. Segre [10] as: z = ℧1+℧2i1+℧3i2+℧4i1i2, where ℧1,℧2,℧3,℧4 ∈ C0, and the independent units
i1, i2 are such that ii

2 = i2
2 = −1, and i1i2 = i2i1. We denote the set of bicomplex numbers C2 is defined

as: C2 = {z : z = ℧1+℧2i1+℧3i2+℧4i1i2,℧1,℧2,℧3,℧4 ∈ C0}, i.e., C2 = {z : z = l1+ i2l2, l1, l2 ∈ C1},
where l1 = ℧1 + ℧2i1 ∈ C1 and l2 = ℧3 + ℧4i1 ∈ C1.

Tricomplex numbers are defined by G. B. Price [9] as: η = ℧1 + ℧2i1 + ℧3i2 + ℧4j1 + ℧5i3 + ℧6j2 +
℧7j3+℧8i4, where ℧1,℧2,℧3,℧4,℧5,℧6,℧7,℧8 ∈ C0, and the independent units i1, i2, i3, i4, j1, j2, j3 are
such that ii

2 = i4
2 = −1, i4 = i1j3 = i1i2i3, j2 = i1i3 = i3i1, j2

2 = 1, j1 = i1i2 = i2i1 and j1
2 = 1. We

denote the set of tricomplex numbers C3 is defined as:
C3 = {η : η = ℧1 +℧2i1 +℧3i2 +℧4j1 +℧5i3 +℧6j2 +℧7j3 +℧8i4,℧1,℧2,℧3,℧4,℧5,℧6,℧7,℧8 ∈ C0},
i.e., C3 = {η : η = z1 + i3z2, z1, z2 ∈ C2}, where z1 = ℧1 + ℧2i2 ∈ C2 and z2 = ℧3 + ℧4i2 ∈ C2.

If η = z1 + i3z2 and µ = w1 + i3w2 be any two tricomplex numbers then the sum is η ± µ =
(z1 + i3z2) ± (w1 + i3w2) = (z1 ± w1) + i3(z2 ± w2) and the product is η.µ = (z1 + i3z2).(w1 + i3w2) =
(z1w1 − z2w2) + i3(z1w2 + z2w1).

Let 0, 1, e1 = 1 + j3/2, e2 = 1 − j3/2 be four idempotent elements in C3 such that e1 + e2 = 1 and
e1e2 = 0. Every tricomplex number η = z1 + i3z2 can be uniquely be expressed as the combination of e1
and e2, i.e., η = z1+ i3z2 = (z1− i2z2)e1+(z1+ i2z2)e2. This representation of η is called the idempotent
representation with respect to the idempotent components η1 = (z1 − i2z2)e1 and η2 = (z1 + i2z2)e2.

An element η = z1 + i3z2 ∈ C3 is called invertible if there exists an element µ in C3 such that ηµ = 1
where µ is called inverse of η. An element in C3 is called nonsingular element if it has an inverse in C3

and an element in C3 is called singular element if it does not have an inverse in C3.
An element µ = w1 + i2w2 ∈ C3 is nonsingular iff |w1

2 + w2
2| ̸= 0 and singular iff |w1

2 + w2
2| = 0.

The inverse of µ is defined as µ−1 = w1−i2w2

w1
2+w2

2 .
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The norm ||.|| of C3 is a positive real valued function and ||.|| : C3 → C0
+ by

||η|| = ||z1 + i3z2||
= {|z1|2 + |z2|2}

1
2

=
[ |(z1 − i2z2)|2 + |(z1 + i2z2)|2

2

] 1
2

= (℧1
2 + ℧2

2 + ℧3
2 + ℧4

2 + ℧5
2 + ℧6

2 + ℧7
2 + ℧8

2)
1
2 ,

where η = ℧1 + ℧2i1 + ℧3i2 + ℧4j1 + ℧5i3 + ℧6j2 + ℧7j3 + ℧8i4 = z1 + i3z2 ∈ C3.
Define a partial order ≾i3 on C3 as follows. For η = z1+ i3z2 and µ = w1+ i3w2 be any two tricomplex

numbers. η ≾i3 µ if and only if z1 ≾i2 w1, and z2 ≾i2 w2. It follows that η ≾i3 µ if one of the following
conditions is satisfied:

(i) z1 = w1, z2 = w2,
(ii) z1 ≺i2 w1, z2 = w2,
(iii) z1 = w1, z2 ≺i2 w2,
(iv) z1 ≺i2 w1, z2 ≺i2 w2.

In particular we will write η ⋨i3 µ if η ≾i3 µ and η ̸= µ and one of (ii),(iii), and (iv) is satisfied, and we
will write η ≺i3 µ if only (iv) is satisfied. Note that

(I) η ≾i3 µ ⇒ ||η|| ≤ ||µ||,
(II) ||η + µ|| ≤ ||η||+ ||µ||,
(III) ||aη|| = |a|||η||, where a is a non negative real number,
(IV) ||ηµ|| ≤ 2||η||||µ||, and the equality holds only when atleast one of η and µ is nonsingular,
(V) ||η−1|| = ||η||−1 if η is a nonsingular,

(VI) || ηµ || =
||η||
||µ|| , if µ is a nonsingular.

A. Azam et al introduced the concept of complex valued metric spaces in [1]. The notion of bicomplex
valued metric spaces was introduced by J. Choi et al in [2]. In [5], G. Mani et al. introduced the idea
of tricomplex valued metric spaces, developed some properties, and demonstrated common fixed point
results for mappings satisfying a rational inequality.

Definition 1.1. [5] Let Φ ̸= ∅ be a set. A tricomplex valued metric is a mapping d : Φ × Φ → C3

satisfying the following axioms:

(i) 0 ≾i3 d(ϱ,ϖ), ∀ ϱ,ϖ ∈ Φ,
(ii) d(ϱ,ϖ) = 0 if and only if ϱ = ϖ in Φ,
(iii) d(ϱ,ϖ) = d(ϖ, ϱ), ∀ ϱ,ϖ ∈ Φ,
(iv) d(ϱ,ϖ) ≾i3 d(ϱ, θ) + d(θ,ϖ), ∀ ϱ, θ,ϖ ∈ Φ.

The pair (Φ, d) is called a tricomplex valued metric space.

A. Mutlu et al [7] introduced the notion of bipolar metric space to give a new definition of distance
measurement between the members of two separate sets. Bipolar metric space is a metric space gener-
alization. Recently, many articles have appeared on fixed point theory in bipolar metric spaces; see, for
example, [3, 4, 6, 8, 12, 11] and the references therein.

Definition 1.2. [7] Let Φ ̸= ∅ and Ψ ̸= ∅ be two sets. A bipolar metric is a mapping D : Φ×Ψ → [0,∞)
satisfying the following axioms:

(I) D(ϱ,ϖ) = 0 ⇒ ϱ = ϖ, whenever (ϱ,ϖ) ∈ Φ×Ψ,
(II) ϱ = ϖ ⇒ D(ϱ,ϖ) = 0, whenever (ϱ,ϖ) ∈ Φ×Ψ,
(III) D(ϱ,ϖ) = D(ϖ, ϱ), ∀ ϱ,ϖ ∈ Φ ∩Ψ,
(IV) D(ϱ1, ϖ2) ≤ D(ϱ1, ϖ1) +D(ϱ2, ϖ1) +D(ϱ2, ϖ2), ∀ ϱ1, ϱ2 ∈ Φ, and ϖ1, ϖ2 ∈ Ψ.

The triple (Φ,Ψ, D) is called a bipolar metric space.
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In this paper, we extend the domain of tricomplex valued metric to the Cartesian product of two non-
empty sets, and we present a new definition of tricomplex valued bipolar metric space that generalizes the
notion of tricomplex valued metric space. Also, we derive some properties of tricomplex valued bipolar
metric spaces. Furthermore, in tricomplex valued bipolar metric space, we prove some fixed point results
for contravariant maps satisfying various types of rational inequalities.

2. Tricomplex valued bipolar metric spaces

Definition 2.1. Let Φ ̸= ∅ and Ψ ̸= ∅ be two sets. A tricomplex valued bipolar metric is a mapping
d : Φ×Ψ → C3 satisfying the following conditions:

(i) 0 ≾i3 d(ϱ,ϖ), whenever (ϱ,ϖ) ∈ Φ×Ψ,
(ii) d(ϱ,ϖ) = 0 ⇒ ϱ = ϖ , whenever (ϱ,ϖ) ∈ Φ×Ψ,
(iii) ϱ = ϖ ⇒ d(ϱ,ϖ) = 0, whenever (ϱ,ϖ) ∈ Φ×Ψ,
(iv) d(ϱ,ϖ) = d(ϖ, ϱ), ∀ ϱ,ϖ ∈ Φ ∩Ψ,
(v) d(ϱ1, ϖ2) ≾i3 d(ϱ1, ϖ1) + d(ϱ2, ϖ1) + d(ϱ2, ϖ2), ∀ ϱ1, ϱ2 ∈ Φ, and ϖ1, ϖ2 ∈ Ψ.

The triple (Φ,Ψ, d) is called a tricomplex valued bipolar metric space(or, TVBMS).

Remark 2.2. (i) Let (Φ,Ψ, d) be a TVBMS. If Φ ∩ Ψ = ∅, then (Φ,Ψ, d) is called disjoint. The
space (Φ,Ψ, d) is said to be a joint if Φ∩Ψ ̸= ∅. The sets Ψ and Φ are called right pole and left
pole of (Φ,Ψ, d), respectively.

(ii) Let (Φ, d) be a tricomplex valued metric space, then (Φ,Φ, d) is a TVBMS. Conversely, if (Φ,Ψ, d)
is a TVBMS such that Φ = Ψ, then (Φ, d) is a tricomplex valued metric space.

Example 2.3. Let Φ = (0,∞) and Ψ = (−∞, 0]. Let d(ϱ,ϖ) = (i2i3)|ϱ −ϖ|, where (ϱ,ϖ) ∈ Φ × Ψ.
Then (Φ,Ψ, d) is a disjoint TVBMS.

Definition 2.4. Let (Φ,Ψ, d) be a TVBMS. Where points of the sets Ψ,Φ, and Φ ∩Ψ are called right,
left, and central points respectively. A sequence that contains only right(or left, or central) points is called
a right (or left, or central) sequence in (Φ,Ψ, d).

Definition 2.5. Let (Φ,Ψ, d) be a TVBMS. A left sequence (ϱn)
∞
n=1 converges to a right point ϖ(or

(ϱn)
∞
n=1 → ϖ) if and only if for every c ∈ C3 with 0 ≺i3 c, there exists an integer n0 ∈ N(Natural

numbers) such that d(ϱn, ϖ) ≺i3 c, ∀ n ≥ n0. Also a right sequence (ϖn)
∞
n=1 converges to a left point ϱ

(or (ϖn)
∞
n=1 → ϱ) if and only if for every c ∈ C3 with 0 ≺i3 c, there exists an integer n0 ∈ N such that

d(ϱ,ϖn) ≺i3 c, ∀ n ≥ n0. When it is given (θn)
∞
n=1 → ϑ for a TVBMS (Φ,Ψ, d) without precise data

about the sequence, this means that either (θn)
∞
n=1 is a right sequence and ϑ is a left point, or (θn)

∞
n=1 is

a left sequence and ϑ is a right point.

Lemma 2.6. Let (Φ,Ψ, d) be a TVBMS. Then a left sequence (ϱn)
∞
n=1 converges to a right point ϖ if

and only if ||d(ϱn, ϖ)|| → 0, and also a right sequence (ϖn)
∞
n=1 converges to a left point ϱ if and only if

||d(ϱ,ϖn)|| → 0.

Proof. Let (ϱn)
∞
n=1 be a left sequence, and (ϱn)

∞
n=1 → ϖ ∈ Ψ. For a given real number ϵ > 0, let

c = ϵ√
8
+ i1

ϵ√
8
+ i2

ϵ√
8
+ j1

ϵ√
8
+ i3

ϵ√
8
+ j2

ϵ√
8
+ j3

ϵ√
8
+ i4

ϵ√
8
. For every c ∈ C3 with 0 ≺i3 c, there exists

an integer n0 ∈ N such that, for all n ≥ n0, d(ϱn, ϖ) ≺i3 c.

||d(ϱn, ϖ)|| < ||c|| = ϵ, ∀ n ≥ n0.

It follows that ||d(ϱn, ϖ)|| → 0 as n → ∞. Conversely, suppose that ||d(ϱn, ϖ)|| → 0 as n → ∞. Then
given c ∈ C3 with 0 ≺i3 c, there exists a real number δ > 0 such that for z ∈ C3

||z|| < δ ⇒ z ≺i3 c.

For this δ, there exists an integer n0 ∈ N such that

||d(ϱn, ϖ)|| < δ, ∀ n ≥ n0.
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This means that d(ϱn, ϖ) ≺i3 c,∀n ≥ n0. Hence ϱn → ϖ ∈ Ψ.
Obviously, a right sequence (ϖn)

∞
n=1 converges to a left point ϱ if and only if ||d(ϱ,ϖn)|| → 0 and this

complete the proof. □

Lemma 2.7. Let (Φ,Ψ, d) be a TVBMS. If a central point is a limit of a sequence, then it is the unique
limit of the sequence.

Proof. Let (ϱn)
∞
n=1 be a left sequence, (ϱn)

∞
n=1 → ϱ ∈ Φ ∩ Ψ, and (ϱn)

∞
n=1 → ϖ ∈ Ψ. For a given real

number ϵ > 0, let c = ϵ√
8
+i1

ϵ√
8
+i2

ϵ√
8
+j1

ϵ√
8
+i3

ϵ√
8
+j2

ϵ√
8
+j3

ϵ√
8
+i4

ϵ√
8
. For every c ∈ C3 with 0 ≺i3 c,

there exists an integer n0 ∈ N such that, for all n ≥ n0, we have d(ϱn, ϱ) ≺i3
c
3 , and d(ϱn, ϖ) ≺i3

c
2 , and

then

d(ϱ,ϖ) ≾i3 d(ϱ, ϱ) + d(ϱn, ϱ) + d(ϱn, ϖ) ≺i3 0 +
c

2
+

c

2
.

||d(ϱ,ϖ)|| ≤ ||d(ϱ, ϱ) + d(ϱn, ϱ) + d(ϱn, ϖ)|| < ||0 + c

2
+

c

2
|| = ||c|| = ϵ.

Since ϵ > 0 is arbitrary, we have d(ϱ,ϖ) = 0 which implies ϱ = ϖ. □

Lemma 2.8. Let (Φ,Ψ, d) be a TVBMS. If a left sequence (ϱn)
∞
n=1 converges to ϖ and a right sequence

(ϖn)
∞
n=1 converges to ϱ, then d(ϱn, ϖn) → d(ϱ,ϖ) as n → ∞.

Proof. Let (ϱn)
∞
n=1 → ϖ ∈ Ψ, and (ϖn)

∞
n=1 → ϱ ∈ Φ. For a given real number ϵ > 0, let c =

ϵ√
8
+ i1

ϵ√
8
+ i2

ϵ√
8
+ j1

ϵ√
8
+ i3

ϵ√
8
+ j2

ϵ√
8
+ j3

ϵ√
8
+ i4

ϵ√
8
. For every c ∈ C3 with 0 ≺i3 c, there exists an

integer n0 ∈ N such that, for all n ≥ n0, we have d(ϱn, ϖ) ≺i3
c
2 , and d(ϱ,ϖn) ≺i3

c
2 , then

d(ϱ,ϖ) ≾i3 d(ϱ,ϖn) + d(ϱn, ϖn) + d(ϱn, ϖ)

implies

d(ϱ,ϖ)− d(ϱn, ϖn) ≾i3 d(ϱ,ϖn) + d(ϱn, ϖ) ≺ c

2
+

c

2
,

||d(ϱn, ϖn)− d(ϱ,ϖ)|| ≤ ||d(ϱ,ϖn) + d(ϱn, ϖ)|| < ||c|| = ϵ,∀n ≥ n0,

and hence d(ϱn, ϖn) → d(ϱ,ϖ) as n → ∞. □

Definition 2.9. Let (Φ1,Ψ1) and (Φ2,Ψ2) be two tricomplex valued bipolar metric spaces, and f :
Φ1 ∪Ψ1 → Φ2 ∪Ψ2.

(i) If f(Φ1) ⊆ Φ2 and f(Ψ1) ⊆ Ψ2, then f is called a covariant map from (Φ1,Ψ1) to (Φ2,Ψ2), and
we write f : (Φ1,Ψ1) ⇒ (Φ2,Ψ2).

(ii) If f(Φ1) ⊆ Ψ2 and f(Ψ1) ⊆ Φ2, then f is called a contravariant map from (Φ1,Ψ1) to (Φ2,Ψ2),
and we write f : (Φ1,Ψ1) ⇄ (Φ2,Ψ2).

Remark 2.10. Suppose d1, and d2 be two tricomplex valued bipolar metrics on (Φ1,Ψ1) and (Φ2,Ψ2) re-
spectively. We can also use the symbols f : (Φ1,Ψ1, d1) ⇒ (Φ2,Ψ2, d2) and f : (Φ1,Ψ1, d1) ⇄ (Φ2,Ψ2, d2)
in the place of f : (Φ1,Ψ1) ⇒ (Φ2,Ψ2) and f : (Φ1,Ψ1) ⇄ (Φ2,Ψ2).

Definition 2.11. Let (Φ,Ψ, d) be a TVBMS.

(i) A sequence (ϱn, ϖn) on the set Φ×Ψ is called a bisequence on (Φ,Ψ, d).
(ii) If both (ϱn)

∞
n=1 and (ϖn)

∞
n=1 converges, then the bisequence (ϱn, ϖn) is called convergent. If

both (ϱn)
∞
n=1 and (ϖn)

∞
n=1 converges to a same point ϱ ∈ Φ ∩ Ψ, then the bisequence is called

biconvergent.
(iii) A bisequence (ϱn, ϖn) on (Φ,Ψ, d) is called a Cauchy bisequence, if for each c ∈ C3 with 0 ≺i3 c,

there is an n0 ∈ N such that d(ϱn, ϖn+m) ≺i3 c, ∀ n ≥ n0.

Lemma 2.12. Let (Φ,Ψ, d) be a TVBMS. Then (ϱn, ϖn) is a Cauchy bisequence if and only if
||d(ϱn, ϖn+m)|| → 0 as n → ∞.
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Proof. Let (ϱn, ϖn) is a Cauchy bisequence. For a given real number ϵ > 0, let c = ϵ√
8
+ i1

ϵ√
8
+ i2

ϵ√
8
+

j1
ϵ√
8
+ i3

ϵ√
8
+ j2

ϵ√
8
+ j3

ϵ√
8
+ i4

ϵ√
8
. For every c ∈ C3 with 0 ≺i3 c, there exists an integer n0 ∈ N such

that, for all n ≥ n0, d(ϱn, ϖn+m) ≺i3 c.

||d(ϱn, ϖn+m)|| < ||c|| = ϵ, ∀ n ≥ n0.

It follows that ||d(ϱn, ϖn+m)|| → 0 as n → ∞. Conversely, suppose that ||d(ϱn, ϖn+m)|| → 0 as n → ∞.
Then given c ∈ C3 with 0 ≺i3 c, there exists a real number δ > 0 such that for z ∈ C3

||z|| < δ ⇒ z ≺i3 c

For this δ, there exists an integer n0 ∈ N such that

||d(ϱn, ϖn+m)|| < δ, ∀ n ≥ n0.

This means that d(ϱn, ϖn+m) ≺i3 c,∀n ≥ n0. Hence (ϱn, ϖn) is a Cauchy bisequence. □

Proposition 2.13. Let (Φ,Ψ, d) be a TVBMS. Then every biconvergent bisequence is a Cauchy bise-
quence.

Proof. Let (ϱn, ϖn) be a bisequence, which is biconvergent to a point ϱ ∈ Φ ∩ Ψ. For a given real
number ϵ > 0, let c = ϵ√

8
+ i1

ϵ√
8
+ i2

ϵ√
8
+ j1

ϵ√
8
+ i3

ϵ√
8
+ j2

ϵ√
8
+ j3

ϵ√
8
+ i4

ϵ√
8
. For every c ∈ C3 with

0 ≺i3 c, there exists an integer n0 ∈ N such that for every n ≥ n0, d(ϱn, ϱ) ≺i3
c
2 , and for every n ≥ n0,

d(ϱ,ϖn+m) ≺i3
c
2 . Then we have

d(ϱn, ϖn+m) ≾i3 d(ϱn, ϱ) + d(ϱ, ϱ) + d(ϱ,ϖn+m) ≺i3

c

2
+ 0 +

c

2
,∀n ≥ n0.

||d(ϱn, ϖn+m)|| ≤ ||d(ϱn, ϱ) + d(ϱ, ϱ) + d(ϱ,ϖn+m)|| < || c
2
+ 0 +

c

2
|| = ||c|| = ϵ,∀n ≥ n0.

So (ϱn, ϖn) is a Cauchy bisequence. □

Proposition 2.14. Let (Φ,Ψ, d) be a TVBMS. Then every convergent Cauchy bisequence is biconvergent.

Proof. Let (ϱn, ϖn) be a Cauchy bisequence such that (ϱn)
∞
n=1 convergent to ϖ in Ψ and (ϖn)

∞
n=1

convergent to ϱ in Φ. For a given real number ϵ > 0, let c = ϵ√
8
+ i1

ϵ√
8
+ i2

ϵ√
8
+ j1

ϵ√
8
+ i3

ϵ√
8
+ j2

ϵ√
8
+

j3
ϵ√
8
+ i4

ϵ√
8
. For every c ∈ C3 with 0 ≺i3 c, there exists an integer n0 ∈ N such that d(ϱn, ϖ) ≺i3

c
3 ,

d(ϱ,ϖn+m) ≺i3
c
3 , for all n ≥ n0, and d(ϱn, ϖn+m) ≺i3

c
3 , for all n ≥ n0. Then

d(ϱ,ϖ) ≾i3 d(ϱ,ϖn+m) + d(ϱn, ϖn+m) + d(ϱn, ϖ) ≺i3

c

3
+

c

3
+

c

3
,∀n ≥ n0.

||d(ϱ,ϖ)|| ≤ ||d(ϱ,ϖn+m) + d(ϱn, ϖn+m) + d(ϱn, ϖ)|| < || c
3
+

c

3
+

c

3
|| = ||c|| = ϵ,∀n ≥ n0.

Therefore d(ϱ,ϖ) = 0 and so that ϱ = ϖ. Then (ϱn, ϖn) is biconvergent. □

Definition 2.15. A TVBMS (Φ,Ψ, d) is called complete, if every Cauchy bisequence is convergent, or
equivalently, biconvergent.

3. main results

In this section, we shall prove some fixed point theorems for different types of contravariant mappings
on TVBMS.

Theorem 3.1. Let (Φ,Ψ, d) be a complete TVBMS with nonsingular 1+d(ϱ,ϖ) and ||1+d(ϱ,ϖ)|| ≠ 0,
whenever (ϱ,ϖ) ∈ Φ × Ψ. If a contravariant map f : (Φ,Ψ, d) ⇄ (Φ,Ψ, d) satisfies d(f(ϖ), f(ϱ)) ≾i3

λd(ϱ,ϖ)+ µd(ϱ,f(ϱ))d(f(ϖ),ϖ)
1+d(ϱ,ϖ) , whenever (ϱ,ϖ) ∈ Φ×Ψ, for some λ, µ ∈ (0, 1) with λ+2µ < 1. Then the

function f : Φ ∪Ψ → Φ ∪Ψ has a unique fixed point(or, UFP).
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Proof. Let ϱ0 ∈ Φ, ϖ0 = f(ϱ0) ∈ Ψ, and ϱ1 = f(ϖ0). Suppose, ϖn = f(ϱn) and ϱn+1 = f(ϖn), for all
n ∈ N. Then (ϱn, ϖn) is a bisequence on (Φ,Ψ, d). For all n ∈ N, from

d(ϱn, ϖn) = d(f(ϖn−1), f(ϱn))

≾i3 λd(ϱn, ϖn−1) +
µd(ϱn, f(ϱn))d(f(ϖn−1), ϖn−1)

1 + d(ϱn, ϖn−1)

= λd(ϱn, ϖn−1) +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn−1)

||d(ϱn, ϖn)|| ≤ ||λd(ϱn, ϖn−1) +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn−1)
||

≤ λ||d(ϱn, ϖn−1)||+ 2µ||d(ϱn, ϖn)||

we conclude that

||d(ϱn, ϖn)|| ≤
λ

1− 2µ
||d(ϱn, ϖn−1)||,

and

d(ϱn, ϖn−1) = d(f(ϖn−1), f(ϱn−1))

≾i3 λd(ϱn−1, ϖn−1) +
µd(ϱn−1, f(ϱn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϱn−1, ϖn−1)

= λd(ϱn−1, ϖn−1) +
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, ϖn−1)

||d(ϱn, ϖn−1)|| ≤ ||λd(ϱn−1, ϖn−1) +
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, ϖn−1)
||

≤ λ||d(ϱn−1, ϖn−1)||+ 2µ||d(ϱn, ϖn−1)||,

so that

||d(ϱn, ϖn−1)|| ≤
λ

1− 2µ
||d(ϱn−1, ϖn−1)||,

Therefore, by putting β = λ
1−2µ , we have

||d(ϱn, ϖn)|| ≤ β2n||d(ϱ0, ϖ0)||

and

||d(ϱn, ϖn−1)|| ≤ β2n−1||d(ϱ0, ϖ0)||.

For every m,n ∈ N,

d(ϱn, ϖm) ≾i3 d(ϱn, ϖn) + d(ϱn+1, ϖn) + d(ϱn+1, ϖm)

≾i3 (β2n + β2n+1)d(ϱ0, ϖ0) + d(ϱn+1, ϖm)

≾i3 ...

≾i3 (β2n + β2n+1 + ...+ β2m−1)d(ϱ0, ϖ0) + d(ϱm, ϖm)

≾i3 (β2n + β2n+1 + ...+ β2m)d(ϱ0, ϖ0), if m > n,

||d(ϱn, ϖm)|| ≤ (β2n + β2n+1 + ...+ β2m)||d(ϱ0, ϖ0)||, if m > n,

and similarly, if m < n, then

d(ϱn, ϖm) ≾i3 (β2m+1 + β2m+2 + ...+ β2n+1)d(ϱ0, ϖ0),

||d(ϱn, ϖm)|| ≤ (β2m+1 + β2m+2 + ...+ β2n+1)||d(ϱ0, ϖ0)||.
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By β ∈ (0, 1), ||d(ϱn, ϖm)|| → 0, as n,m → ∞, we conclude that (ϱn, ϖn) is a Cauchy bisequence. Since
(Φ,Ψ, d) is complete, (ϱn, ϖn) converges, and biconverges to a point θ ∈ Φ ∩ Ψ. Hence, f(ϱn) = ϖn →
θ ∈ Φ∩Ψ as n → ∞ implies d(f(θ), f(ϱn)) → d(f(θ), θ) as n → ∞, by using Lemma 2.8. Also by taking
the limit from

d(f(θ), f(ϱn)) ≾i3 λd(ϱn, θ) +
µd(ϱn, ϖn)d(f(θ), θ)

1 + d(ϱn, θ)

we obtain

||d(f(θ), f(ϱn))|| ≤ λ||d(ϱn, θ)||+
µ||d(ϱn, ϖn)d(f(θ), θ)||

||1 + d(ϱn, θ)||
,

as n → ∞, we get d(f(θ), θ) = 0. Hence f(θ) = θ. Therefore θ is a fixed point of f .
If ϑ is another fixed point of f , then f(ϑ) = ϑ, ϑ ∈ Φ ∩Ψ, and hence,

d(θ, ϑ) = d(f(θ), f(ϑ)) ≾i3 λd(θ, ϑ) +
µd(θ, f(θ))d(f(ϑ), ϑ)

1 + d(θ, ϑ)
≾i3 λd(θ, ϑ).

Therefore ||d(θ, ϑ)|| = 0 so that θ = ϑ. So f has a UFP. □

The above Theorem 3.1 generalizes a Corollary 5 of [1].

Example 3.2. Let Φ = {0, 1
2 , 2} and Ψ = {0, 1

2}. Let d(ϱ,ϖ) = (1 + i3)|ϱ−ϖ|, where (ϱ,ϖ) ∈ Φ×Ψ.
Then (Φ,Ψ, d) is a complete TVBMS. Define a contravariant map f : (Φ,Ψ, d) ⇄ (Φ,Ψ, d) by f(0) = 0,

f( 12 ) = 0, and f(2) = 1
2 . Then, f satisfies the inequality d(f(ϖ), f(ϱ)) ≾i3 λd(ϱ,ϖ) + µd(ϱ,f(ϱ))d(f(ϖ),ϖ)

1+d(ϱ,ϖ)

for λ = 1
3 and µ = 1

6 . By Theorem 3.1, f has a UFP zero in Φ ∩Ψ.

Theorem 3.3. Let (Φ,Ψ, d) be a complete TVBMS with nonsingular 1+d(ϱ,ϖ) and ||1+d(ϱ,ϖ)|| ≠ 0,
whenever (ϱ,ϖ) ∈ Φ × Ψ. If a contravariant map f : (Φ,Ψ, d) ⇄ (Φ,Ψ, d) satisfies d(f(ϖ), f(ϱ)) ≾i3

λ[d(ϱ, f(ϱ)) + d(f(ϖ), ϖ)] + µd(ϱ,f(ϱ))d(f(ϖ),ϖ)
1+d(ϱ,ϖ) , whenever (ϱ,ϖ) ∈ Φ × Ψ, for some λ, µ ∈ (0, 1) with

2λ+ 2µ < 1. Then the function f : Φ ∪Ψ → Φ ∪Ψ has a UFP.

Proof. Let ϱ0 ∈ Φ, ϖ0 = f(ϱ0) ∈ Ψ, and ϱ1 = f(ϖ0). Suppose, ϖn = f(ϱn) and ϱn+1 = f(ϖn), for all
n ∈ N. Then (ϱn, ϖn) is a bisequence on (Φ,Ψ, d). For all n ∈ N, from

d(ϱn, ϖn) = d(f(ϖn−1), f(ϱn))

≾i3 λ[d(ϱn, f(ϱn)) + d(f(ϖn−1), ϖn−1)] +
µd(ϱn, f(ϱn))d(f(ϖn−1), ϖn−1)

1 + d(ϱn, ϖn−1)

= λ[d(ϱn, ϖn) + d(ϱn, ϖn−1)] +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn−1)

||d(ϱn, ϖn)|| ≤ ||λ[d(ϱn, ϖn) + d(ϱn, ϖn−1)] +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn−1)
||

≤ λ||[d(ϱn, ϖn) + d(ϱn, ϖn−1)]||+ 2µ||d(ϱn, ϖn)||,

we conclude that

||d(ϱn, ϖn)|| ≤
λ

1− λ− 2µ
||d(ϱn, ϖn−1)||,
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and

d(ϱn, ϖn−1) = d(f(ϖn−1), f(ϱn−1))

≾i3 λ[d(ϱn−1, f(ϱn−1)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϱn−1, f(ϱn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϱn−1, ϖn−1)

= λ[d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)] +
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, ϖn−1)

||d(ϱn, ϖn−1)|| ≤ ||λ[d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)] +
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, ϖn−1)
||

≤ λ||[d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)]||+ 2µ||d(ϱn, ϖn−1)||
so that

||d(ϱn, ϖn−1)|| ≤
λ

1− λ− 2µ
||d(ϱn−1, ϖn−1)||,

Therefore, by putting β = λ
1−λ−2µ , we have

||d(ϱn, ϖn)|| ≤ β2n||d(ϱ0, ϖ0)||
and

||d(ϱn, ϖn−1)|| ≤ β2n−1||d(ϱ0, ϖ0)||.
For every m,n ∈ N,

d(ϱn, ϖm) ≾i3 d(ϱn, ϖn) + d(ϱn+1, ϖn) + d(ϱn+1, ϖm)

≾i3 (β2n + β2n+1)d(ϱ0, ϖ0) + d(ϱn+1, ϖm)

≾i3 ...

≾i3 (β2n + β2n+1 + ...+ β2m−1)d(ϱ0, ϖ0) + d(ϱm, ϖm)

≾i3 (β2n + β2n+1 + ...+ β2m)d(ϱ0, ϖ0), if m > n,

||d(ϱn, ϖm)|| ≤ (β2n + β2n+1 + ...+ β2m)||d(ϱ0, ϖ0)||, if m > n,

and similarly, if m < n, then

d(ϱn, ϖm) ≾i3 (β2m+1 + β2m+2 + ...+ β2n+1)d(ϱ0, ϖ0),

||d(ϱn, ϖm)|| ≤ (β2m+1 + β2m+2 + ...+ β2n+1)||d(ϱ0, ϖ0)||.
By β ∈ (0, 1), ||d(ϱn, ϖm)|| → 0, as n,m → ∞, we conclude that (ϱn, ϖn) is a Cauchy bisequence. Since
(Φ,Ψ, d) is complete, (ϱn, ϖn) converges, and biconverges to a point θ ∈ Φ ∩ Ψ. Hence, f(ϱn) = ϖn →
θ ∈ Φ∩Ψ as n → ∞ implies d(f(θ), f(ϱn)) → d(f(θ), θ) as n → ∞, by using Lemma 2.8. Also by taking
the limit from

d(f(θ), f(ϱn)) ≾i3 λ[d(ϱn, ϖn) + d(f(θ), θ)] +
µd(ϱn, ϖn)d(f(θ), θ)

1 + d(ϱn, θ)

we obtain

||d(f(θ), f(ϱn))|| ≤ λ[||d(ϱn, ϖn) + d(f(θ), θ)||] + µ||d(ϱn, ϖn)d(f(θ), θ)||
||1 + d(ϱn, θ)||

,

as n → ∞, we get d(f(θ), θ) = 0. Hence f(θ) = θ. Therefore θ is a fixed point of f .
If ϑ is another fixed point of f , then f(ϑ) = ϑ, ϑ ∈ Φ ∩Ψ, and hence,

d(θ, ϑ) = d(f(θ), f(ϑ)) ≾i3 λ[d(θ, f(θ)) + d(f(ϑ), ϑ)] +
µd(θ, f(θ))d(f(ϑ), ϑ)

1 + d(θ, ϑ)
.
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Therefore ||d(θ, ϑ)|| = 0 so that θ = ϑ. So f has a UFP. □

The above Theorem 3.3 generalizes a Theorem 3.2 of [11].

Example 3.4. Let Φ be the collection of all singleton subsets of R and Ψ be the collection of all compact
subsets of R. Let d(ϱ,E) = |ϱ − inf(E)| + i3|ϱ − sup(E)|, where (ϱ,E) ∈ Φ × Ψ. Then (Φ,Ψ, d) is a

complete TVBMS. Define a contravariant map f : (Φ,Ψ, d) ⇄ (Φ,Ψ, d) by f(E) = inf(E)+sup(E)+6
8 , for all

E ∈ Φ∪Ψ. Then, f satisfies the inequality d(f(E), f(ϱ)) ≾i3 λ[d(ϱ, f(ϱ))+d(f(E), E)]+ µd(ϱ,f(ϱ))d(f(E),E)
1+d(ϱ,E)

for λ = 1
3 and µ = 0. By Theorem 3.3, f has a UFP {1} ∈ Φ ∩Ψ.

Theorem 3.5. Let (Φ,Ψ, d) be a complete TVBMS with nonsingular 1 + d(ϱ, f(ϱ)) + d(f(ϖ), ϖ) and
||1 + d(ϱ, f(ϱ)) + d(f(ϖ), ϖ)|| ≠ 0, whenever (ϱ,ϖ) ∈ Φ × Ψ. If a contravariant map f : (Φ,Ψ, d) ⇄
(Φ,Ψ, d) satisfies d(f(ϖ), f(ϱ)) ≾i3 λ[d(ϱ,ϖ)+d(ϱ, f(ϱ))+d(f(ϖ), ϖ)]+ µd(ϱ,f(ϱ))d(f(ϖ),ϖ)

1+d(ϱ,f(ϱ))+d(f(ϖ),ϖ) , whenever

(ϱ,ϖ) ∈ Φ × Ψ, for some λ, µ ∈ (0, 1) with 3λ + 2µ < 1. Then the function f : Φ ∪ Ψ → Φ ∪ Ψ has a
UFP.

Proof. Let ϱ0 ∈ Φ, ϖ0 = f(ϱ0) ∈ Ψ, and ϱ1 = f(ϖ0). Suppose, ϖn = f(ϱn) and ϱn+1 = f(ϖn), for all
n ∈ N. Then (ϱn, ϖn) is a bisequence on (Φ,Ψ, d). For all n ∈ N, from

d(ϱn, ϖn) = d(f(ϖn−1), f(ϱn))

≾i3 λ[d(ϱn, ϖn−1) + d(ϱn, f(ϱn)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϱn, f(ϱn))d(f(ϖn−1), ϖn−1)

1 + d(ϱn, f(ϱn)) + d(f(ϖn−1), ϖn−1)

= λ[d(ϱn, ϖn−1) + d(ϱn, ϖn) + d(ϱn, ϖn−1)] +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn) + d(ϱn, ϖn−1)

||d(ϱn, ϖn)|| ≤ ||λ[d(ϱn, ϖn−1) + d(ϱn, ϖn) + d(ϱn, ϖn−1)] +
µd(ϱn, ϖn)d(ϱn, ϖn−1)

1 + d(ϱn, ϖn) + d(ϱn, ϖn−1)
||

≤ λ||[d(ϱn, ϖn−1) + d(ϱn, ϖn) + d(ϱn, ϖn−1)]||+ 2µ||d(ϱn, ϖn)||
we conclude that

||d(ϱn, ϖn)|| ≤
2λ

1− λ− 2µ
||d(ϱn, ϖn−1)||,

and

d(ϱn, ϖn−1) = d(f(ϖn−1), f(ϱn−1))

≾i2 λ[d(ϱn−1, ϖn−1) + d(ϱn−1, f(ϱn−1)) + d(f(ϖn−1), ϖn−1)]

+
µd(ϱn−1, f(ϱn−1))d(f(ϖn−1), ϖn−1)

1 + d(ϱn−1, f(ϱn−1)) + d(f(ϖn−1), ϖn−1)

= λ[d(ϱn−1, ϖn−1) + d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)]

+
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, f(ϱn−1)) + d(f(ϖn−1), ϖn−1)

||d(ϱn, ϖn−1)|| ≤ ||λ[d(ϱn−1, ϖn−1) + d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)]

+
µd(ϱn−1, ϖn−1)d(ϱn, ϖn−1)

1 + d(ϱn−1, f(ϱn−1)) + d(f(ϖn−1), ϖn−1)
||

≤ λ||[d(ϱn−1, ϖn−1) + d(ϱn−1, ϖn−1) + d(ϱn, ϖn−1)]||+ 2µ||d(ϱn, ϖn−1)||
so that

||d(ϱn, ϖn−1)|| ≤
2λ

1− λ− 2µ
||d(ϱn−1, ϖn−1)||,
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Therefore, by putting β = 2λ
1−λ−2µ , we have

||d(ϱn, ϖn)|| ≤ β2n||d(ϱ0, ϖ0)||

and

||d(ϱn, ϖn−1)|| ≤ β2n−1||d(ϱ0, ϖ0)||.

For every m,n ∈ N,

d(ϱn, ϖm) ≾i3 d(ϱn, ϖn) + d(ϱn+1, ϖn) + d(ϱn+1, ϖm)

≾i3 (β2n + β2n+1)d(ϱ0, ϖ0) + d(ϱn+1, ϖm)

≾i3 ...

≾i3 (β2n + β2n+1 + ...+ β2m−1)d(ϱ0, ϖ0) + d(ϱm, ϖm)

≾i3 (β2n + β2n+1 + ...+ β2m)d(ϱ0, ϖ0), if m > n,

||d(ϱn, ϖm)|| ≤ (β2n + β2n+1 + ...+ β2m)||d(ϱ0, ϖ0)||, if m > n,

and similarly, if m < n, then

d(ϱn, ϖm) ≾i3 (β2m+1 + β2m+2 + ...+ β2n+1)d(ϱ0, ϖ0),

||d(ϱn, ϖm)|| ≤ (β2m+1 + β2m+2 + ...+ β2n+1)||d(ϱ0, ϖ0)||.

By β ∈ (0, 1), ||d(ϱn, ϖm)|| → 0, as n,m → ∞, we conclude that (ϱn, ϖn) is a Cauchy bisequence. Since
(Φ,Ψ, d) is complete, (ϱn, ϖn) converges, and biconverges to a point θ ∈ Φ ∩ Ψ. Hence, f(ϱn) = ϖn →
θ ∈ Φ∩Ψ as n → ∞ implies d(f(θ), f(ϱn)) → d(f(θ), θ) as n → ∞, by using Lemma 2.8. Also by taking
the limit from

d(f(θ), f(ϱn)) ≾i3 λ[d(ϱn, θ) + d(ϱn, ϖn) + d(f(θ), θ)] +
µd(ϱn, ϖn)d(f(θ), θ)

1 + d(ϱn, ϖn) + d(f(θ), θ)

we obtain

||d(f(θ), f(ϱn))|| ≤ λ[||d(ϱn, θ) + d(ϱn, ϖn) + d(f(θ), θ)||] + µ||d(ϱn, ϖn)d(f(θ), θ)||
||1 + d(ϱn, ϖn) + d(f(θ), θ)||

,

as n → ∞, we get d(f(θ), θ) = 0. Hence f(θ) = θ. Therefore θ is a fixed point of f .
If ϑ is another fixed point of f , then f(ϑ) = ϑ, ϑ ∈ Φ ∩Ψ, and hence,

d(θ, ϑ) = d(f(θ), f(ϑ)) ≾i3 λ[d(θ, ϑ) + d(θ, f(θ)) + d(f(ϑ), ϑ)] +
µd(θ, f(θ))d(f(ϑ), ϑ)

1 + d(θ, f(θ)) + d(f(ϑ), ϑ)
.

Therefore ||d(θ, ϑ)|| = 0 so that θ = ϑ. So f has a UFP. □

The above Theorem 3.5 generalizes a Theorem 3.3 of [11].

4. conclusions

All tricomplex valued bipolar metric space fixed point theorems are generalisations of tricomplex
valued metric space fixed point theorems, which are generalisations of bicomplex valued metric spaces
and complex valued metric spaces. Because complex valued metric spaces are generalisations of metric
spaces, studies of fixed point results in tricomplex valued bipolar metric spaces are important.
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